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Autoreferát dizertačnej práce
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1 Introduction
The state complexity studies the succinctness of regular language representation deterministic
finite automata. For a regular language it is the number of states of the minimal deterministic
finite automaton recognizing this languages. For a regular operation it represents the worst case
state complexity of languages resulting from this operation, considered as a function of the state
complexities of the operands.
The first investigated state complexity-related problem was the cost of NFA to DFA conversion. Rabin
and Scott showed that any n-state NFA could be simulated by a 2n-state DFA [RS59]. Moreover 2n

states are not only sufficient, but also necessary – this was at first shown by Soviet scientists [Yer62,
Lup63], but this went unnoticed by the western world and equivalent results were independently
proven in [Moo71, MF71].
The operational state complexity studies the relationship between the state complexity of inputs and
the output of a regular operation. The pioneering works from 1970s [Mas70, Mir66] were isolated
for a long time before the gradual renewal of interest in late 1980s. This period is characteristic by
unsystematic results like [RI89, Bir91]; Birget introduced the term state complexity [Bir91]. A boom
followed; it was initiated by the very systematic paper of Yu, Salomaa and Zhuang; they studied all
basic regular operation on regular and unary languages [YZS94]. This interest still persists and the
current state of art is well-documented in a technical report by Gao, Moreira, Reis and Yu [GMRY15].
One of the current avenues of research on state complexity is a systematic study of basic regular
operations on various subregular families: finite languages [CCSY01], cofinite languages [BGN10],
free languages [BJLS11], star-free languages [BL12], ideal languages [BJL13], and closed languages
[BJZ14]. In the light of this extensive research on other regular operations, the square operation has
been incomprehensibly neglected, the only results are on regular and unary languages [Ram06].

The state complexity reflects only the worst case. It does not say anything about any other case. Two
different approaches to fix this have emerged so far. On the one hand, Nicaud studied an average case
[Nic99]. Since the mere enumeration of all automata with a given state complexity is already too
difficult, he limited himself to basic operations on unary automata.
The magic number problem approach seems to be more fruitful. The original magic number problem
was introduced by Iwama, Kambayashi and Takaki at the Third Conference on Developments in
Language Theory. Their question was whether, given any integers n and α with n ≤ α ≤ 2n, we
are able to find a binary language with nondeterministic state complexity n and deterministic state
complexity α [IKT00]. If this is not possible, the number α is called magic for n [IMP00].
Seemingly simple question turned out to be hard and in an attempt to tackle this problem, the condition
on alphabet was relaxed. First it was shown, that if an exponentially growth of an alphabet is allowed,
there are no magic numbers [Jir01]. Then the growth of an alphabet was limited to linear [Gef07b] but
a breakthrough was a proof that a constant four letter alphabet suffices [JJS08]. Further improvement
was a ternary alphabet [Jir11b]. Despite many efforts, it remains an open problem, whether binary
alphabet suffices; several papers addressed this problem, identifying various families of non-magic
numbers including [IKT00, IMP00, Jir01, Gef05, MS08, Jir08]. Moreover, if we restrict ourselves
to certain subregular language classes, the hierarchy remains contiguous [HJK12]. The situation is
different for unary languages. Since eO(

√
n logn) states are sufficient for a DFA simulating any n-state

NFA [Chr86], the relevant interval is [n, eO(
√
n logn)]. And indeed, not every α from this interval is

attainable. Actually, in some sense the non-magic numbers are rare [Gef07a].
The generalization of the magic number problem from a determinization to regular operations has the
same principle, as the generalization from the cost of NFA to DFA transformation to operational state
complexity. The operational magic number problem is so far studied much less systematically than
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the original magic number problem or the operational state complexity. These are all known results
concerning DFAs:
There are no magic numbers for union on a binary alphabet [HJS05]. From the De Morgan’s law and
the fact that complementation preserves state complexity follows that neither there are magic numbers
for intersection on a binary alphabet. If we allow a growing alphabet, there are no magic numbers for
concatenation [Jir11a], for reversal on a linear 2n − 2 letter alphabet [Šeb13], and for a Kleene star
on a linear 2n alphabet [JPŠ14].
On the other hand, there are three cases, when magic number do exist: cyclic shift on fixed alphabet
[JO08], conversion of a unary DFA to NFA [Gef07a], and conversion of unary symmetric difference
NFA to classic DFA [vZ05].

Questions concerning state complexity and the magic number problem are natural and would be
understood by researchers since the very beginning of computer science. Why nobody asked them?
One of the reasons for a long hibernation of this field during 70s and 80s may be the fact that until
the 1990s, the computational power was not sufficient enough to aid in constructing hypotheses. This
may be especially true for the magic number problem that needs even more computational resources
and indeed it did not emerge until the early 2000s.

2 Aims
Th first of our aims is to determine the state complexity of the square operation on subregular classes
in free, closed and ideal languages families and fill the gap left in the literature. Our second aim is to
study the magic number problem on unary languages for Kleene star and square.

3 Main Results – State Complexity
Results on concatenation in [BJLS11, BJZ14, BJL13] provide an instant upper bound on the state
complexity of square operation. Yet poorer upper bound can be obtained from the results on square
on regular languages in [Ram06].
Table 1 provides a summary of our results and a comparison with these results.

square |
∑
| concatenation |

∑
|

ideal
unary 2n− 1 m+ n− 1
right n+ 2n−2 2 m+ 2n−2 2

left, 2-sided, all-sided 2n− 1 1 m+ n− 1 1

closed

unary 2n− 2 m+ n− 2
suffix 1

2
(n2 + n)− 1 3 (m− 1)n+ 1 3

prefix (n+ 4)2n−3 − 1 2 (m+ 1)2n−1 3
factor, subword 2n− 1 2 m+ n− 1 2

free
unary 2n− 2 m+ n− 2

prefix, bifix, factor, subword 2n− 2 1 m+ n− 2 1
suffix n2n−3 + 1 3 (m− 1)2n−1 + 1 3

regular
unary 2n− 1 mn if (m,n) = 1

general n2n − 2n−1 2 m2n − 2n−1 2

Table 1: Comparison of our results on the state complexity of square with concatenation.
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Let us discuss these results in more detail. Witnesses for the bounds for concatenation could be reused
as witnesses for square for all ideal languages except for right ideal languages; all free languages
except for suffix-free languages and for unary-closed languages. We showed that the bound obtained
from concatenation is also tight for right-ideal and factor- or subword-closed languages, but we had
to find new witnesses to prove it.
The rest of results shows that upper bounds from concatenation are only asymptotically tight. For
suffix-closed languages the quadratic bound differs by a factor 1

2
. We provided a new upper bound

and proved its optimality on a ternary alphabet. Tightness on a binary alphabet remains an open
question, but computations suggest that this upper bound cannot be attained by a binary language.
For suffix-free languages the state complexity is exponential and differs by a factor 1

4
. We obtained

an upper bound and proved its tightness again on a ternary alphabet. Tightness on a binary alphabet
is an open problem. Also for prefix-closed languages, the new bound differs from the exponential
bound for concatenation by a factor of 1

4
. In this case, the tightness is shown by a binary alphabet, as

opposed to the bound on concatenation, where a ternary alphabet is used.
Note that all results are shown using a constant alphabet of size at most 3 and except for suffix-free
and suffix-closed languages, the alphabet size is optimal.

4 Main Results – Magic Numbers
The magic number problem for the square (the Kleene star) is stated as follows: is there for every n
and and α such that 1 ≤ α ≤ 2n− 1 (for the Kleene star such that 1 ≤ α ≤ (n− 1)2 + 1) a language
with the state complexity n and the state complexity of its square (its Kleene star) α? Or are there any
gaps – magic numbers?

Square We showed that unless n < 5, all values between 1 and 2n− 1 are attainable and there are
no magic numbers. Value 1 is magic for n = 2 and value 2 is magic for n = 3 or 4.

Kleene Star First we decided the magicness of values higher than n2− 4n+6. We found that only
three or four are non-magic, depending on the parity of n, and integers in two linear intervals between
these values are magic. We conjure that there are many more magic numbers below this bound but
their existence is probably highly dependent on the number-theoretical properties of n.
Magic numbers cannot be too small – we gave a lower bound n + 1 on the smallest magic number.
However, computations suggest that this bound is not even asymptotically optimal. A better bound is
an open problem. Our results on which numbers are magic are summarized in Figure 1.

? ? ? ?

?

Figure 1: Summary of known magic numbers for Kleene star on unary languages.

As a corollary we also proved in this section that the conjecture from [EHJ13, Section 6] that the state
complexity of Kleene star on unary non-returning DFAs is n2 − 4n+ 6, is true.
In the end we outlined a connection with the Frobenius problem and derived a formula for a special
case of its generalization.
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