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Descriptional complexity of formal systems

We study the state complexity of the concatenation operation under the
assumption that both languages are accepted by deterministic finite automata
with more final states, and as a result, we get the exact complexity of this
operation on alternating finite automata. We completely solve the magic
number problem for the cut operation for every alphabet size by getting some
unattainable (magic) values in the unary case and showing that all possible
values are attainable for an alphabet of size at least two. We describe the
possible ranges of accepting state complexities for several operations. We get
the exact nondeterministic state complexity of power and positive closure in
all considered subclasses of convex languages. We consider the descriptional
complexity of the forever operator on six different models of finite automata,
and in 32 of 36 cases, we get the exact trade-off for this combined operation.

1) Provide the state-of-the-art concerning descriptional complexity of formal
systems.

2) Investigate the complexity of the concatenation operation on deterministic
and alternating finite automata.

3) Find the range of possible state complexities of languages resulting from the
cut operation.

4) For some regular operations, find the range of possible accepting state
complexities.

5) Obtain the nondeterministic state complexities of power and positive closure
on subclasses of convex languages.

6) Examine the descriptional complexity of the forever operator.
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Popisna zlozitost formalnych systémov

Studujeme stavovi zloZitost® zretazenia za predpokladu, Ze oba jazyky su
akceptované deterministickymi konecnymi automatmi s viacerymi koncovymi
stavmi, a ako vysledok dostdvame presni hodnotu zloZitosti tejto operacie
na alternujucich kone&nych automatoch. Uplne vyrie§ime problém magickych
Cisel pre operaciu strojového zretazenia a vSetky velkosti abecedy
tym, ze ziskame nedosiahnutelné (magické) hodnoty v unarnom pripade
a ukdzeme, Ze vsetky mozné hodnoty si dosiahnutelné v pripade binarnej
abecedy, respektive akejkol'vek abecedy velkosti aspon dva. PopiSeme
mozné rozsahy akceptacnych stavovych zlozitosti pre niekol'ko regularnych
operacii. Dostaneme presnil nedeterministicki stavova zloZitost” mocniny
a pozitivneho uzaveru vo vSetkych uvazovanych podtriedach konvexnych
jazykov. Uvazujeme popisnu zloZitost’ operatora forever na Siestich roznych
modeloch kone¢nych automatov a v 32 z 36 pripadov dostavame presny prevod
pre tuto kombinovanu operaciu.

1) Zhrnut’ sucasny stav problematiky v oblasti popisnej zlozitosti formalnych
systémov.

2) Skamat zlozitost’ operdcie zret'azenia na deterministickych a alternujicich
kone¢nych automatoch.

3) Najst’ rozsah moznych stavovych zlozitosti jazykov ziskanych aplikaciou
operacie strojového zret'azenia.

4) Najst' rozsah moznych akceptacnych stavovych zlozitosti pre viaceré
regularne operacie.

5) Ziskat nedeterministicku stavovu zlozitost’ mocniny a pozitivneho uzaveru
na podtriedach konvexnych jazykov.

6) Skamat’ popisnu zlozitost’ operatora forever.
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Abstract

We determine the state complexity of concatenation on languages represented by deter-
ministic finite automata with more than one final state. We provide ternary witness
languages for an arbitrary number of final states in both automata, and binary witnesses
in the case when the first automaton has at least two non-final states. We use our binary
witnesses to prove that the upper bound 2™ + n + 1 on the complexity of concatenation
on alternating finite automata is tight, which solves an open problem from the literature.

We show that every value from one up to the known upper bound can be attained
by the state complexity of a language resulting from the cut operation on two binary
languages. In the unary case, we prove that some values are unattainable (magic). For all
attainable values, we provide unary witnesses. This solves completely the so-called magic
number problem for the cut operation for every alphabet size.

For the operations of intersection, symmetric difference, right and left quotients, re-
versal, permutation on binary finite languages, and cut, we describe the ranges of possible
accepting state complexities. Fxcept for intersection and permutation, this range is equal
to all non-negative or to all positive integers. For intersection, we get the range from one
up to mn. In the case of permutation, only the values zero and one are unattainable.

We show that the upper bound mn on the nondeterministic state complexity of in-
tersection on subword-free languages is asymptotically tight for infinitely many pairs m
and n in the binary case. We also provide a binary left ideal witness for reversal. This
solves two open problems from the literature. We prove that the nondeterministic state
complexity of the k-th power is kn in the classes of closed and convex languages, and it
is k(n — 1) + 1 in the classes of free and ideal languages. Moreover, we show that the
nondeterministic complexity of positive closure of every factor-closed or subword-closed
language is one, and it is n in all the remaining subclasses of convex languages. All our
witness languages are defined over a unary or a binary alphabet which is always optimal.

We examine the complexity of the forever operator assuming that the operand is rep-
resented by one of these six models of finite automata: complete and partial deterministic
finite automata, nondeterministic finite automata with a unique or multiple initial states,
alternating, and Boolean automata. The resulting language is required to be represented
again by an automaton of one of these six models. In 32 of 36 cases, we get exact trade-offs,

and most of our witnesses are defined over a small fixed alphabet.

Keywords: regular languages, finite automata, descriptional complexity, regular opera-

tions, concatenation, cut operation, forever operator, subclasses of convex languages



Abstrakt

Urcéime stavovi zlozitost zretazenia na jazykoch reprezentovanych deterministickymi ko-
ne¢nymi automatmi s viac ako jednym koncovym stavom. Poskytneme ternarne dosvedcéu-
juce jazyky pre [ubovolny pocet koncovych stavov v oboch automatoch a binirne v pri-
pade, Ze prvy automat ma aspon dva nekoncové stavy. NaSe binarne jazyky pouzijeme
na ziskanie presnej hodnoty 2™ 4+ n + 1 vyjadrujtcej zlozitost zretazenia na alternujtcich
kone¢nych automatoch, ¢o riesi otvoreny problém z literatury.

Dokazeme, ze kazda hodnota az po znamu hornt hranicu moéze byt dosiahnuta ako
stavova zlozitost jazyka ziskaného operaciou strojového zretazenia na dvoch bindrnych
jazykoch. V unarnom pripade ukazeme, ze niektoré hodnoty su nedosiahnutelné (magickeé).
Kazdu dosiahnutelni hodnotu dosved¢ime unarnymi jazykmi. To tplne riesi takzvany
problém magickych ¢isel pre operaciu strojového zretazenia pre kazda velkost abecedy.

Pre prienik, symetricky rozdiel, pravy a Tavy kvocient, zrkadlovy obraz, permutéciu
na binarnych konec¢nych jazykoch a strojové zretazenie popiSeme rozsahy moznych ak-
ceptacnych stavovych zlozitosti. S vynimkou prieniku a permutécie je tento rozsah rovny
vSetkym nezapornym alebo vSetkym kladnym celym ¢islam. Pre prienik dostaneme rozsah
od jednej po mn. Pre permutéciu st jediné nedosiahnutelné hodnoty nula a jedna.

Ukéazeme, Ze horna hranica mn pre nedeterministicki stavova zlozitost prieniku na
bezpodslovovych jazykoch je asymptoticky tesna pre nekonec¢ne vela dvojic m a n v binér-
nom pripade. TaktieZ poskytneme binarny l'avo idealny dosved¢ujuci jazyk pre zrkadlovy
obraz. Tym rieSime dva otvorené problémy z literatiry. Dokazeme, Ze nedeterminis-
ticka stavova zlozitost k-tej mocniny je kn na triedach uzavretych a konvexnych jazykov
a k(n — 1)+ 1 na ostatnych uvazovanych podtriedach. Navyse ukdZeme, Ze nedeterminis-
tické zlozitost pozitivneho uzaveru kazdého faktorovo alebo podslovovo uzavretého jazyka
je jedna a pre vSetky ostatné podtriedy konvexnych jazykov je n. VSetky naSe dosvedcu-
juce jazyky st definované na unarnej alebo binarnej abecede, ktora je vzdy optimélna.

Skimame zlozitost operatora “navzdy” za predpokladu, Ze operand je reprezentovany
jednym zo Siestich typov kone¢nych automatov: tplné a ¢iasto¢né deterministické konecné
automaty, nedeterministické automaty s jednym alebo s viacerymi koncovymi stavmi,
alternujice a booleovské automaty. Pozadujeme, aby vysledny jazyk bol reprezentovany
opat automatom jedného z tychto typov. V 32 z 36 pripadov dostaneme presny prevod a

vi¢sina naSich dosvedc¢ujucich jazykov je definovand nad malou konstantnou abecedou.

Krlacové slova: regularne jazyky, koneéné automaty, popisna zlozitost, regularne opera-

cie, zretazenie, strojové zretazenie, operator forever, podtriedy konvexnych jazykov
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Introduction

Descriptional complexity measures the costs of description of formal languages by different
formal systems such as deterministic and nondeterministic automata, grammars, and
regular expressions. Some of these systems may provide a more succinct representation of
a language than some others. For example, the language consisting of all strings having
an a in the n-th position from the end is accepted by a nondeterministic finite automaton
with n + 1 states, while every deterministic finite automaton for this language requires at
least 2" states.

In this thesis, we study descriptional complexity in the class of regular languages
and some of its subclasses. Although regular languages are the simplest languages in
the Chomsky hierarchy, some challenging problems are still open. Let us mention the
question of how many states are sufficient and necessary in the worst case for two-way
deterministic finite automata to simulate two-way nondeterministic finite automata. The
importance of this question is given by its connection to the well-known open question
whether or not NLOGSPACE=DLOGSPACE |3, 84].

A natural complexity measure for regular languages is the number of states in the
minimal deterministic finite automaton (DFA) for the given language. This number,
called the state complexity [4, 5], is characteristic for every regular language, and regular
languages form an infinite hierarchy with respect to this complexity measure.

If we consider a regular operation, for example, intersection, then we may ask, how
many states are sufficient and necessary in the worst case to accept the intersection of two
languages, the first of them accepted by an m-state DFA, and the second one by an n-
state DFA. The product construction [83] results in an mn-state DFA for intersection,
and provides an upper bound on the state complexity of this operation. On the other
hand, every DFA for the intersection of languages that count the number of a’s modulo m
and the number of b’s modulo n has at least mn states. Hence the upper bound mn is

tight, and we say that the state complexity of intersection is mn.



In 1970, Maslov [74] examined the state complexity of union, concatenation, star,
and some other regular operations. However, his paper remained unnoticed until 2005
[64], and the systematic study of the state complexity of operations began in 1994 with
the paper by Yu, Zhuang, and Salomaa [94]. They provided the state complexity of
concatenation and star, taking into account the possibility that the minimal DFAs for
arguments may have more than one final state. Moreover, they included also the results
for unary languages, that is, for the languages defined over a one-letter alphabet.

In 1959, Rabin and Scott |83] introduced nondeterministic finite automata (NFAs) and
provided an algorithm known as the subset construction which shows that every n-state
NFA can be simulated by a DFA with 2" states. The representation of regular languages
by NFAs gives another complexity measure, called nondeterministic state complexity, and
defined as the smallest number of states in any NFA for the given language. Birget [4, 5]
provided a lower-bound method, known as the fooling set method, for the number of states
in NFAs, and Holzer and Kutrib [40] investigated the nondeterministic state complexity
of basic regular operations. Some results of [40] were improved by Jiraskova [57] where
binary witnesses for reversal and complementation can be found.

Alternating finite automata (AFAs) were introduced by Chandra, Kozen, and Stock-
meyer [21]. Fellah, Jirgensen, and Yu [32] considered AFAs as a special case of Boolean
finite automata introduced by Brzozowski and Leiss [12] in which the transition function
maps a state and an input symbol to a Boolean function with variables in the state set.
While in BFAs an arbitrary Boolean function may be initial, AFAs have a single initial
state. It is known that a language is accepted by an n-state AFA if and only if its reversal
is accepted by a DFA with 2" states, half of them final [32, 59]. This simple observation
allows us to give the tightness of the upper bound 2" +n + 1 from [32]| and solve an open
problem stated in 1990 by Fellah et al. Using the same observation, the tightness of all
other upper bounds from [32] has been proven in [45, 59].

In 2000, Iwama et al. [53] asked whether all values between n and 2" can be attained
by the state complexity of a language accepted by a minimal, with respect to the number
of states, n-state NFA. The unattainable values were called magic numbers in [54], and
the problem of finding all attainable complexities is called the magic number problem.
The magic number problem was later considered also for language operations such as
union and intersection by Hricko et al. [50, 51|, complementation by Szabari [90, 60],
reversal by Sebej [87], star by Palmovsky et al. [65] and Cevorova [17], and concatenation
by Jirdskova et al. [66].



The smallest number of accepting states in any DFA for a language is also a complexity
measure. It is called accepting state complexity and has been introduced in 2016 by
Dassow [25]. He provided the ranges of accepting state complexities of languages resulting
from complementation, union, concatenation, difference, and star. All the resulting ranges
are given by all non-negative (or all positive) integers. This search for ranges of accepting
state complexities can be also considered as a variant of the magic number problem. We

solve this problem for several other regular operations.

The nondeterministic accepting state complexity also can be considered, however, as
shown by Dassow, here the hierarchy of regular languages collapses to three levels: the

nondeterministic accepting state complexity of every regular language may be 0, 1, or 2.

Some operations on formal languages are inspired by applications in computer systems.
The cut operation, which describes the implementation of “concatenation” on UNIX text
processors for regular expression matching, was formally defined by Berglund et al. [2].
This operation is regular, and its state complexity was obtained by Drewes et al. [29].
In this thesis, we investigate the magic number problem for the cut operation, and we

provide a complete solution for this problem.

The state complexity of operations can be smaller if we assume that the operands
belong to a specific subclass of regular languages. Already the class of unary languages,
considered in [94], can be viewed as a subclass which decreases the state complexity of
operations. The class of finite languages was studied by Campeanu et al. [16], co-finite
languages were examined by Bassino et al. [1], and prefix-free languages, motivated by

prefix codes, were investigated by Han, Salomaa, and Wood [37].

In 2010, Brzozowski [8] examined the state complexity in the classes of convex lan-
guages, and later, with co-authors, in their subclasses: free [14], ideal [10], and closed
languages [11]. Nondeterministic state complexity on all these classes was investigated by
Mlynarcik et al. in a series of papers |62, 77, 46, 47|, which were summarized in his dis-
sertation thesis [78]. Two open problems from [78] are solved in this thesis. Moreover, we
consider another two operations: the k-th power and positive closure, taking into account
the results by Cevorové [18, 19] on the state complexity of the second power, square, on

free, ideal, and closed languages.

When we consider the (nondeterministic) state complexity or accepting state complex-
ity, the arguments and the results of an operation are described using the same automata
model. However, Birget [6] provided upper and lower bounds on the complexity of the
forever operator in case when the argument and resulting language may be described by

different automata models, namely, deterministic, nondeterministic, and alternating au-



tomata. We continue his research by improving some of his results and considering three

more automata models.

The thesis is organized as follows. After giving basic definitions, upper and lower
bound methods, and the state-of-the-art in the next three chapters, we study the con-
catenation operation on languages represented by deterministic finite automata with more
than one final state. Our motivation comes from an open problem stated by Fellah, Jiir-
gensen, and Yu [32| concerning the tightness of the upper bound 2™ + n + 1 on the
complexity of concatenation on alternating finite automata. To get a witness for AFAs,
we need to describe DFAs with half of their states final that are hard for concatenation
on DFAs. To this aim, we consider DFAs with an arbitrary number of final states and
we are able to describe ternary m- and n-state witness DFAs with k£ and ¢ final states,
respectively, for arbitrary values of m,n, k, £. We also provide binary witnesses under as-
sumption that £ < m—2. We use these binary witness DFAs to describe binary witnesses
for concatenation on AFAs, and we prove that the upper bound 2™ + n + 1 is tight. This

solves the open problem from [32].

Chapter 5 is devoted to the cut operation. We ask which values from one up to the
known upper bound can be obtained as the state complexity of a language resulting from
the cut of languages represented by minimal DFAs. In the unary case, we are able to
get the magic status of every possible value in the range. We show that some values are
always magic (unattainable). For all the remaining values, we describe the corresponding
unary witness automata. In the binary case, or in the case of an arbitrary alphabet of
size at least two, we show that no values are magic, that is, for an arbitrary number
in the corresponding range we can describe minimal binary DFAs such that the state
complexity of their cut gives this number. This solves the magic number problem for the

cut operation for an arbitrary alphabet size.

We consider a similar problem with respect to a different complexity measure, called
accepting state complexity, in Chapter 6. For the operations of symmetric difference, left
and right quotients, and cut, we get contiguous ranges {0} UN of possible accepting state
complexities, while the resulting range for intersection is {0, 1,...,mn}, for reversal it

is N, and for permutation on binary finite languages it is N\ {1}.

In Chapter 7 we represent languages by nondeterministic finite automata. First, we
show that the upper bound mn on the nondeterministic state complexity of intersection
on subword-free languages is asymptotically tight for infinite number of pairs m and n
in the binary case. This provides a positive answer to a conjecture stated by Mlynarcik

[78]. Then we describe a binary left ideal witness for reversal. This improves the result
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of |78] where a ternary left ideal witness for reversal is provided. Finally, we get tight
upper bounds on the nondeterministic state complexity of power and positive closure on
the classes of prefix-, suffix-, factor-, and subword-free, -closed, and -convex languages,
and right, left, two-sided, and all-sided ideal languages. All our witnesses are defined over
a unary or binary alphabet. Moreover, whenever we use a binary alphabet, it is always
optimal in the sense that the corresponding upper bound cannot be met in the unary
case.

The description complexity of the forever operator, defined by L — (E*LE)C, is exam-
ined in Chapter 8. Here we represent the source language by one of six models of finite
automata: complete or partial deterministic, nondeterministic with a unique or multiple
initial states, Boolean, and alternating. We are asking, how many states are sufficient
and necessary in the worst case for an automaton in one of these six models to accept
the resulting language. In 32 of 36 cases, we get the exact trade-offs with witnesses that
are often defined over an optimal alphabet. Among the most interesting results is the
NFA-to-DFA trade-off for the forever operator given by Dedekind number which counts
the number of antichains of subsets of a finite set.

Chapters 4 and 8 only summarize our results which have been published in two papers
in scientific journals. These papers are provided in Appendices [A] and [B] at the end of
this thesis.






Chapter 1

Preliminaries

In this section, we give some basic definitions and preliminary results. For details, the
reader may refer to [43, 89, 92|.

Let X be a finite non-empty alphabet of symbols. Then ¥* denotes the set of strings
over ¥ including the empty string . The cardinality of a finite set A is denoted by |A|,
and its power-set by 24. The length of a string w is denoted by |w|, and the number of
occurrences of a symbol a in the string w is denoted by |w|,. The set of positive integers

is denoted N and the set {i,7+1,...,;} is denoted by [i, j] if ¢ and j are integers.

A language is any subset of ¥*. For a language L over an alphabet X, the comple-
ment of L is the language LF = ¥ \ L. The intersection of languages K and L is the
language KN L ={w |w € K and w € L}. The union of languages K and L is the lan-
guage KUL = {w | w € K or w € L}. The symmetric difference of languages K and L is
the language K ® L = (KNLYU(LNKC). The concatenation of languages K and L is the
language KL = {uv | u € K and v € L}. The right quotient of a language K by a lan-
guage L is the language K L' = {w | there exists a string x € L such that wr € K }.
The left quotient of a language K by a language L is the language L7'K = {w |
there exists a string € L such that zw € K }. The cut of languages K and L is the
language K!L = {uv | u € K, v € L, and uwv' ¢ K for every non-empty prefix v’ of v }.
The k-th power of a language L is the language L* = LLF71 where L° = {¢}. The
star of a language L is the language L* = 5oL’ The positive closure of a lan-
guage L is the language L* = U¢21 L. The per_mutation of a language L is the lan-
guage per(L) = Uypep{u € 2° | () = w(w)} where o(w) = (Wl [0lays - [w]ary).
The reversal of a string is defined as e = ¢ and (wa)® = aw’ for each symbol a and

string w. The reversal of a language L is the language L® = {w | w € L}.
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1.1 Deterministic and Nondeterministic Automata

A nondeterministic finite automaton is a 5-tuple N = (Q, %, -, I, F'), where () is a finite
set of states, ¥ is a finite alphabet, - : Q x ¥ — 2% is the transition function which is
extended to the domain 2¢ x ¥* in the natural way, I C () is the set of initial states,
and F' C @ is the set of final (or accepting) states. The language accepted by N is the
set LIN)={weX*|T-wNF #0}

If |I| > 2, we say that A is a nondeterministic finite automaton with nondeterministic
choice of initial state (so we use the abbreviation NNFA, cf. [92]). Otherwise, if |I| = 1,
we say that A is a nondeterministic finite automaton with a unique initial state (NFA). In
this case, we write A = (Q, X, 0, s, F') instead of A = (Q, X, 0, {s}, F). Notice that every
NFA is an NNFA.

For a symbol a and states p and ¢, we say that (p, a,q) is a transition in the automa-
ton N if ¢ € p - a, and for a string w, we write p — ¢ if ¢ € p-w. In Chapters 5 and 6,
we denote the transition function by ¢, and we write d(p, w) instead of p - w. We also say
that the state ¢ has an in-transition on symbol a, and the state p has an out-transition
on symbol a. An automaton is non-returning if each its initial state does not have any
in-transitions, and it is non-ezxiting if each its final state does not have any out-transitions.
If p is an initial state, we sometimes write — p.

The reverse of an NNFA N = (Q,%,-, I, F) is the NNFA N% obtained from N by
swapping the roles of initial and final states, and by reversing all the transitions. Formally,
we have Nf = (Q,%,-f F,I), where ¢ -Ba={p€Q|q€p-a} for every p,qin Q and
every a in X. It is well known that the NNFA N accepts L(N)™.

A state ¢ is reachable if there exists a string w such that ¢ € s-w for an initial state s.
Let A = (Q,%,-,I,F) be an NNFA and S, 7 C Q. We say that S is reachable in A if
there exists a string w in X* such that S = I -w. Next, we say that T"is co-reachable in A
if T' is reachable in A%,

A state ¢ of an NNFA A is called a dead state if no string is accepted by A from g,
that is, if ¢-wN F = () for every string w. An NNFA A is a trim NNFA if each its state ¢
is reachable, and, moreover, no state of A is dead.

An NFA A = (Q, %, -, s, F) is a partial deterministic finite automaton (pDFA) if for
each state p and each input symbol a, the set p - a has at most one element. In such a
case, we write p - a = ¢ instead of p-a = {q}. If |[p-a| = 1 for each p and a, then A is
a complete deterministic finite automaton (DFA). Notice that every DFA is a pDFA. We
usually write “partial DFA” instead of “pDFA”.



Two states in a DFA are distinguishable if there exists a string that is accepted from
one state and rejected from the other state. If two states are not distinguishable, they are
equivalent. Two automata are equivalent if they accept the same language. A DFA A is
minimal if there is no equivalent DFA which has less states than A. Analogously we define
minimal pDFAs, NFAs, and NNFAs. Tt is well known that every regular language has a
unique, up to isomorphism, minimal DFA. Next, a DFA is minimal if and only if all its
states are reachable from the initial state, and all its states are pairwise distinguishable.

We call a state ¢ of an NNFA sink state if it has a loop on each input symbol, that
is, ¢ - a = {q} for each a in 3. Notice that every minimal pDFA has no non-final sink
states, and every minimal DFA has at most one non-final sink state. It follows that the
number of states in the minimal DFA and its equivalent minimal pDFA differs by at most
one, and the number of accepting states in the minimal DFA and minimal pDFA is the

same.
Every NNFA N = (Q,%,-, I, F) can be converted into an equivalent DFA

D(N) = (29,2, [,{S € 2° [ SO F # 0});
remind that - is extended to the domain 2¢ x 3 [83|. The DFA D(N) is called the subset

automaton of the NNFA N. The subset automaton may not be minimal since some of its
states may be unreachable or equivalent to other states.

The state complezity of a regular language L, sc(L), is the smallest number of states
in any DFA for L, that is, the number of states in the minimal DFA for L. The nonde-
terministic state complexity of a regular language L, nsc(L), is the smallest number of
states in any NFA for L, that is, the number of states in a minimal NFA for L.

The state complezity of a k-ary operation o is the function from N* to N given by
(n1,ng,...,ng) — max{sc(o(Ly, Lo, ..., L)) | sc(L;) < mn; fori=1,2,... k}.

The nondeterministic state complexity of an operation is defined in an analogous way.
When we consider the complexity of an operation on a subclass C of regular languages,
then we moreover require that each language L; is in C.

To prove the minimality of NNFAs, we use a fooling set lower-bound technique from
|4, 5, 34, 52, 48| which is described in Chapter 2.

Definition 1.1. A set of pairs F = {(x;,y;) | 1 < i < n} is called a fooling set for a
language L if
(F1) for each i, we have x;y; € L, that is, each pair concatenates to a string in L,
(F2)ifi+# j, thenxy; ¢ L orx;y; ¢ L, that is, at least one mismatched concatenation
15 not in L.



If languages K and L are accepted by NFAs A = ({0,1,...,m — 1},%,-4,0, Fy)
and B = ({0,1,...,n—1},%,-5,0, F), respectively, then the language K N L is accepted
by the product automaton [83]

AxB=({0,1,...,m—1}x{0,1,...,n—1},%,-,(0,0), F4 x Fg),

where
(p,q)-a=(p-aa)x(q-pa).

By the row r (0 < r < m — 1), we denote the set of states {(r,j) | 0 < j <n— 1}, and
by the column s (0 < s <n — 1), we denote the set of states {(i,s) | 0 <i <m — 1}.

1.2 Boolean and Alternating Automata

In this section, we give some basic definitions and notations for Boolean and alternating
finite automata. For details, we refer the reader to [12, 32, 59, 71, 72, 89|.

A Boolean finite automaton (BFA, cf. [12]) is a quintuple A = (Q, %, 9, gs, F'), where Q
is a finite non-empty set of states such that Q = {qi,...,¢,}, ¥ is an input alphabet, J is
the transition function that maps () x X into the set B,, of Boolean functions with variables
{q1,---,q}, gs € B, is the initial Boolean function, and F' C @ is the set of final states.
The transition function J is extended to the domain B, x ¥* as follows: For all g in B,

ain 3, and w in $*, we have

(1) d(g.¢) = g;

(2) if g =g(q1,---,qn), then 6(g,a) = g(6(q1,a),...,0(qn,a));
(3) d(g, wa) = d(6(g,w),a).

Next, let f = (fi,..., f.) be the Boolean vector with f; = 1 iff ¢; € F. The language
accepted by the BFA A is the set of strings L(A) = {w € ¥* | §(gs, w)(f) = 1}.

A Boolean finite automaton is called alternating (AFA, cf. [32]) if the initial function
is a projection g(qi,-..,q,) = ¢;- An alternating finite automaton A is an NFA if 6(qy, a)
are of the form \/,_; ¢;. If 0(qx, a) are of the form ¢;, then the automaton A is a DFA.
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) a b

G| a1V Q1
Q2 Q2 QN Q2

Table 1.1: The transition function of the alternating finite automaton A;.

For an example, consider AFA A; = ({q1, 2}, {a,b},0, 1, {g2}), where transition func-
tion 0 is given in Table 1.1. We have

d(q1,ab) = 0(6(qr,a),b) =0(q1 V2. 0) =1 V (T AN g2) = @1 V @o.

To determine whether ab € L(A;), we evaluate (g, ab) at the finality vector f = (0,1).
We obtain 1, hence ab € L(A;).

1.3 Subclasses of Convex Languages

If u,v,w,xr € ¥* and w = uxv, then u is a prefix of w, x is a factor of w, and v is a
suffiz of w. Both u and v are also factors of w. If w = ugviuy - - - v u,, where u;, v; € 3%,
then vyvs - - - v, is a subword of w. For example, let w = abbach. Strings abac, bbb, bc are
subwords of w, but string aca is not a subword of w. Every factor of w is also a subword
of w. A prefix v (suffix, factor, subword) of w is proper if v # w.

A language L is prefiz-free if w € L implies that no proper prefix of w is in L; it
is prefiz-closed if w € L implies that each prefix of w is in L; and it is prefix-convex
if u,w € L and u is a prefix of w imply that each string v such that u is a prefix of v and v
is a prefix of w is in L. Suffix-, factor-, and subword-free, -closed, and -convex languages
are defined analogously.

A language L is a right (respectively, left, two-sided, all sided) ideal if L = L>*
(respectively, L = ¥*L, L = ¥*LY* L = L 11 ¥*).

We say that a regular language is a free language if it is either prefix-free, or suffix-
free, or factor-free, or subword-free. Let us emphasize that we do not consider star-free,
or union-free, or any other free languages in this thesis. In an analoguous way, we use the
notions of closed languages, convex languages, and ideal languages.

Notice that the classes of prefix-free, prefix-closed, and right ideal languages are sub-
classes of prefix-convex languages, and similar inclusions hold also for suffix-, factor-, and
subword-convex languages. Next, in the unary case, all four subclasses of free languages

coincide; similarly for ideal, closed, and convex languages.
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Chapter 2

Upper and Lower Bound Methods

The state complexity of a k-ary regular operation o is defined as the function from N¥

to N given by
(n1,n9,...,nk) — max{sc(o(Ly, Lo, ..., L)) | sc(L;) < n; for 1 <i < k}.

To find the state complexity of a binary operation o, we need to find a function f(m,n)
such that

(1) for all integers m and n, and all languages K and L with sc(K) < m and sc(L) < n,
we have sc(K o L) < f(m,n);

(2) for all integers m and n, there exist languages K and L with sc(K) < m, sc(L) < n,
and sc(K o L) = f(m,n).

In case (1), we prove that f(m,n) is an upper bound, and in case (2), we prove
that f(m,n) is a lower bound on the state complexity of the operation o, and the

languages with sc(K o L) = f(m,n) are called witness languages.

Sometimes the upper and lower bound may be different. If the upper and lower bounds
coincide, then we say that f(m,n) is a tight upper bound. In this thesis, our upper and
lower bounds coincide in most cases.

To get an upper bound f(m,n), we need to provide a construction of a DFA for the
language resulting from the operation with at most f(m,n) states. To get lower bounds,
we need to describe languages accepted by m- and n-state DFAs such that every DFA for

the resulting language requires at least f(m,n) states.
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2.1 Lower Bound Methods for DFAs

To get lower bounds on the state complexity, we usually count the number of reachable
and distinguishable states i a subset automaton. To get reachability of a lot of subsets,

we sometimes use the following two observations.

Proposition 2.1. In the subset automaton of the NFA shown in Figure 2.1, each subset

containing the state 0 is reachable from the initial subset {0}.

a,b
i(lj a :j a,b a,b@

Figure 2.1: The NFA used in Proposition 2.1.

Proof. The proof is by induction on the size of subsets. The subset {0} is the initial
subset of the subset automaton. Each subset {0} U S of size k + 1, where 1 <k <n —1,
is reached from the subset {s — min S | s € S} of size k by the string ab™™5~!. Notice

that the proof works for arbitrary transitions on a, b in the state n — 1. O

Proposition 2.2. In the subset automaton of the NFA shown in Figure 2.2, each subset
is reachable from the set {0,1,...,n—1}.

b b
*,@—a, a 2 a a
a

Figure 2.2: The NFA used in Proposition 2.2.

Proof. Notice that we can shift every subset cyclically by one by reading a, and we can
eliminate the state 0 from every subset containing 0 by reading b. Formally, if € S, then
the set S\ 7 is reached from S by reading a" ‘ba’. Hence every subset is reachable from
the set {0,1,...,n —1}. ]
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To prove distinguishability, we use the concepts of uniquely distinguishable and uniquely
reachable states, cf. [15]. We say that a state ¢ of a nondeterministic finite automaton
N =(Q,%,-, 1, F) is uniquely distinguishable if there exists a string w which is accepted
by N from and only from the state ¢, that is, if we have p-wNF # () if and only if p = q.

Proposition 2.3. If two subsets of the subset automaton of an NFA differ in a uniquely

distinguishable state, then the two subsets are distinguishable in the subset automaton.

Proof. Let D be the subset automaton of an NFA N. Let S and T be two subsets of the
subset automaton D. Let g be a uniquely distinguishable state of the NFA N such that,
without loss of generality, ¢ € S\ 7. Then there is a string w which is accepted by N
from and only from ¢. It follows that w is accepted by D from S and rejected from T
Hence S and T are distinguishable in D. ]

We say that a transition (p,a,q) is a unique in-transition in an NFA N if there is
no state r with r # p such that (r,a,q) is a transition in N. We say that a state ¢ is
uniquely reachable from a state p if there is a sequence of unique in-transitions (¢;_1, a;, g;)
fori=1,2,...,k such that ¢ = p and ¢ = q.

Proposition 2.4. Let a uniquely distinguishable state q be uniquely reachable from a

state p. Then the state p is uniquely distinguishable.

Proof. Let a string w be accepted by an NFA N from and only from a state ¢. If (p, a, q) is
a unique in-transition, going to the state g by symbol a, then the string aw is accepted by

the NFA N from and only from the state p. Now the claim can be proved by induction. [

Proposition 2.5. If each state of an NFA N is uniquely distinguishable, then all the

states of the subset automaton D(N) are pairwise distinguishable.

Proof. Let two subsets S and T differ in a state ¢. Since ¢ is uniquely distinguishable,
there is a string w, which is accepted by N from ¢ and rejected from every other state.
It follows that w, distinguishes S and 7. ]

Using the notions of co-reachable subsets, we can reformulate the previous result as
follows.

Proposition 2.6. If for each state q of an NFA N, the singleton set {q} is co-reachable,
then all the states of the subset automaton D(N) are pairwise distinguishable. O]
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2.2 Lower Bound Methods for NFAs

To get a lower bound on the number of states in an NNFA, the fooling set method appears

to be very helpful. First, let us recall the definition of a fooling set.
Definition 2.7. A set of pairs
F={(zy)|1<i<n}

s called a fooling set for a language L if
(F1) for each i, we have x;y; € L, that is, each pair concatenates to a string in L,
(F2) ifi # j, then x;y; ¢ L or x;y; ¢ L, that is, at least one mismatched concatenation

18 not in L.

The next observation shows that the size of a fooling set for L provides a lower bound
on the size of an NNFA for L.

Lemma 2.8 (|4, Lemma 1|, Fooling-Set Lemma). Let F be a fooling set for a lan-
guage L. Then every NNFA for L has at least | F| states.

Proof. Let N be an NNFA for L. Since z;y; € L for each ¢, we may fix an accepting
computation in NV on each x;y;. Let p; be the state on this accepting computation which
is reached after reading x;. Let i # 5. Then in N we have the following two accepting

computations:

Ty Yi
= ¢ = pi = i

Tj Y
— qj — Dj — fj

for some initial states ¢; and ¢;, and some final states f; and f;. It follows that p; # p; be-
cause otherwise both mismatched concatenations would be in L. Hence the states py,...,p,

must be pairwise distinct, and the lemma follows. O]

Let us emphasize that the size of a fooling set provides a lower bound on the size
of NNFAs, that is, nondeterministic finite automata with possibly multiple initial states.
Sometimes, for example in the case of union and reversal, an NNFA for the resulting
language may be smaller by one state then its equivalent minimal NFA. In such a case
we cannot get the tightness of an upper bound using the fooling-set lemma. Instead, the

following modification of the fooling set lemma can be useful.
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Figure 2.3: An NFA for L such that every NFA for L has at least n + 1 states.

Lemma 2.9 (|61, Lemma 4|, AB-Fooling-Set Lemma). Let A and B be disjoint sets
of pairs of strings and let u and v be strings such that AUB, AU{(e,u)}, and BU{(¢,v)}
are fooling sets for a language L. Then every NFA (with a unique initial state) for L has
at least |A| + |B| + 1 states.

Proof. Let A = {(zs,y;) | 1 <i <k} and B = {(z;,y:) | k+1 <i < k+(}. The fact
that AU B is a fooling set implies that there are pairwise distinct states py, ..., prie as
shown in the proof above. Next, after reading the empty string ¢, the NFA is in its unique
initial state go. Since AU {(g,u)} is a fooling set, the state gy must be different from the
states py,...,pg. Since BU {(g,v)} is a fooling set, the state gy must be different from
the states pgi1,...,Prre. This proves the lemma. ]

Example 2.10. Let L be the language accepted by the partial DFA from Figure 2.5. Let
us show that the minimal NFA for L® has n+1 states. Since LT is accepted by an n-state
NNFA, we cannot use Lemma 2.8 (Fooling-Set Lemma). However, we can successfully
use Lemma 2.9 (AB-Fooling-Set Lemma) with

A={(ba’,a" 1) |1 <i<n-—1},

B={(b,a""")},

u=a""', and v =0. O

To avoid tedious descriptions of fooling sets, the following two observations can be

successfully used.

Lemma 2.11 ({g}-Lemma). Let for each state q of an NNFA N, the singleton set {q}
be reachable and co-reachable. Then the NNFA N is minimal.

Proof. Let N = (Q,%,-, I, F'). Since {q} is reachable, there is a string z, with {¢} = I -z,,.
Since {q} is co-reachable, there is a string y, which is accepted by N from and only from
the state ¢. It follows that {(z,,y,) | ¢ € Q} is a fooling set for L(N). By Lemma 2.8,
every NNFA for L(N) has at least |@Q| states. Hence N is a minimal NNFA. O

Example 2.12. Let L = {a™}*U{b"}*. Then L is accepted by the m+n-state NNFA with
two initial states and two disjoint cycles on a and b of length m and n, respectively. In
this NNFA, all singleton sets are reachable and co-reachable, so this NNFA is minimal. To

prove that a minimal NFA for L requires m+n—+1 states, we have to use Lemma 2.9. [
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Lemma 2.13 (Trim-Lemma). Let N be a trim partial DFA. If N is a partial DFA,
then N is a minimal NNFA.

Proof. If N and N¥ satisfy the conditions of this lemma, then for each state ¢ of N, the
singleton set {q} is reachable and co-reachable, and the result follows from Lemma 2.11
({¢}-Lemma). O

Example 2.14. Let L = {a"'}. Then L is accepted by the partial DFA from Figure 2..
By Lemma 2.13 (Trim-Lemma,), this DFA is in fact a minimal NNFA for L. ]

A —( 4 o : 4. . a ,<: > a ,
Figure 2.4: A partial DFA for L = {a"'}.

The next lemma provides another possibility how to avoid describing fooling sets and

get a lower bound on the size of nondeterministic finite automata.

Lemma 2.15 (Greater-Smaller Lemma). Letn > 2. Let N = ({1,2,...,n}, %, I, F)
be an NNFA and {(X;,Y;) | i = 1,2,...,n} be a set of pairs of subsets of the state set
of N such that for each i in {1,2,... ,n},

(1) X; is reachable and Y; is co-reachable in N,

(2)ie X;NY;, and

(3) Xi C{ii+1,....,n} and Y; C{1,2,...,i}.
Then N is a minimal NNFA.

Proof. Since X; is reachable, there is a string x; such that [ - x; = X;. Since Y] is co-
reachable, there is a string y; which is accepted by N from every state in Y; and rejected
from every other state. Since X; NY; = {i}, the string z;y; is in L(N). Let i > j. Then
X;NY; =0, so z;y; is not in L(N). Thus the set {(z;,y;) | ¢ =1,2,...,n} is a fooling set
for L(N). Hence N is a minimal NNFA by Lemma 2.8 (Fooling-Set Lemma). ]

With a symmetric argument as for Lemma 2.15, we can prove also the following result.

Lemma 2.16 (Smaller-Greater Lemma). Letn > 2. Let N = ({1,2,...,n}, %, I, F)
be an NNFA and {(X;,Y;) | i = 1,2,...,n} be a set of pairs of subsets of the state set
of N such that for each i in {1,2,... ,n},

(1) X; is reachable and Y; is co-reachable in A,

(2) i€ X;NY;, and

(3) Xi C{1,2,....i} and Y; C{i,i+1,...,n}.
Then N s a minimal NNFA. ]
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Notice that {¢}-lemma is a special case of both the above lemmas. We will use
Lemma 2.15 in Chapter 7 to prove the minimality of the result of the k-th power on

binary subword-closed languages.

2.3 Upper and Lower Methods for AFAs and BFAs

It follows from [32] and [59] that a language L is accepted by an n-state AFA if and only
if the language L is accepted by a DFA with 2" states and 2"~! final states. As this is

a crucial observation for Chapter 8, we restate these results and provide proof ideas.

Lemma 2.17 (cf. [32, Theorem 4.1, Corollary 4.2] and [59, Lemma 1]). Let L be a
language accepted by an n-state AFA. Then the language L¥ is accepted by a DFA of 2"

states, of which 2"~ are final.

Proof Idea. Let A = ({q1,q2,--.,qn},%,0,q1, F) be an n-state AFA for L. Construct
a 2"-state NNFA A’ = ({0,1}", 52,8, 1,{f}), where

e for every b= (by,...,b,) € {0,1}" and every a € ¥,
8 (bya) ={b € {0,1}" | 6(q;,a)(t)) =b; for i =1,...,n};

[ I:{(bl,,bn)E{O,l}n|b1:1}7
o f=(by,...,b,) €{0,1}" with b; = 1 if and only if ¢; € F.

Then L(A) = L(A’). The NNFA A’ has 2"~! initial states and (A’)% is deterministic. Tt
follows that L% is accepted by a DFA with 2" states, of which 27! are final. O

In the next corollary, asc(L) denotes the smallest number of states in any AFA for L.
Corollary 2.18. For every reqular language L, asc(L) > [log(sc(L%))]. ]

Lemma 2.19 (cf. [59, Lemma 2|). Let L® be accepted by a DFA A of 2" states, of
which 2% are final. Then L is accepted by an n-state AFA.

Proof Idea. Consider 2"-state NNFA AF for L which has 2"7! initial states and exactly
one final state. Let the state set Q of A% be {0,1,...,2" — 1} with the set of initial
states {2"7!,... 2" — 1} and a final state k. Let § be the transition function of A%.
Moreover, for every a € X and for every i € (), there is exactly one state j such that j
goes to i on a in A®. For a state i € Q, let bin(i) = (b1,...,b,) be the binary n-tuple

such that b1by - - - b, is the binary notation of 7 on n digits with leading zeros if necessary.
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Define an n-state AFA A" = (Q', %, ¢, ¢1, F'), where

b Q/: {Q1,~-->Qn}>
o ["={q | bin(k), = 1}, and
o (§'(q1,a),...,8'(qn,a))(bin(i)) = bin(j) where ¢ € 6(j,a) for each 7 in @ and a in 3.

Then L(A") = L(A%), hence L is accepted by an n-state AFA. O

The results of the two lemmas above are summarized in the following corollary.

Corollary 2.20. A language L is accepted by an n-state AFA if and only if its reversal LT
is accepted by a DFA of 2" states, of which 2"~ are final. ]

A similar result holds also for Boolean finite automata, however, here the number of

final states does not matter.

Theorem 2.21. A language L is accepted by an n-state BFA if and only if its reversal L?
is accepted by a DFA of 2" states. ]

Simple observations given in Theorem 2.21 and Corollary 2.20 provide both upper and
lower bound methods for alternating and Boolean automata. We use them to transform
a problem on AFAs and BFAs to a corresponding problem on DFAs for reversals. Since
reversal commutes with all operations under consideration, we are able to go back from
the solution on DFAs to a solution on AFAs or BFAs. In the case of alternating finite
automata, we should be able to find DFA languages that are hard for an operation and
moreover have half of their states final. This is the motivation for Chapter 4 where we

examine the complexity of concatenation on DFAs with more final states.
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Chapter 3

Descriptional Complexity —
State-of-the-Art

In 1959, Rabin and Scott [83] defined the product automaton and proved that the intersec-
tion of two regular languages is also regular using this automata construction. Moreover,
this construction provides the upper bound mn on the state complexity of intersection.
They also defined nondeterministic finite automata (NFAs) and described an algorithm
known as the “subset construction” which shows that every n-state NFA can be simulated
by a 2"-state deterministic finite automaton (DFA). Binary witnesses meeting this upper
bound were described in 1962 by Yershov [91], in 1963 Lupanov [73], and in 1971 by
Moore [79] and Meyer and Fischer [75]. These witnesses are shown in Figures 3.1 to 3.4.

Rabin and Scott provided a proof that also reversal is a regular operation since it is
accepted by the reverse automaton which can be constructed from every NFA. In 1966,
Mirkin [76] pointed out that the ternary witness for determinization described by Lupanov
|73| is the reverse of a DFA, which proved the optimality of the upper bound 2" on the
state complexity of reversal. A binary witness meeting the upper bound 2" for reversal,
shown in Figure 3.5 (above), was given in 1981 by Leiss [72]; notice that every even
state is final. A binary witness for reversal provided by Sebej in 2012 [67] and showin in
Figure 3.6 has a unique final state and moreover is deterministic union-free.

The construction of an NFA for concatenation, given by Rabin and Scott [83], proves
that also the concatenation operation preserves regularity of languages. The upper
bound m2" — 2”1 was shown already in 1970 by Maslov [74] who also provided bi-
nary witness languages. If the first automaton has k final states, then the upper bound
is m2" — k2"~!  as was shown by Yu, Zhuang, and Salomaa in 1994 [94]. This paper was

the cornerstone of a systematic research of state complexity of regular operations.
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Figure 3.2: Lupanov’s ternary and binary witnesses for determinization from |[73].

The ternary witness is the reverse of a DFA, which is thus a witness for reversal |76].

b
b b b b
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a

Figure 3.4: Binary witness for determinization by Meyer and Fischer [75].
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Figure 3.5: Binary and ternary witnesses for reversal by Leiss [72]; for the binary witness

with half states final, an example with n = 6 is displayed.

Figure 3.6: Sebej’s binary witness for reversal with a unique final state from [67).

In |94], a ternary witness for concatenation was shown, and the binary case was left open.
The authors did not know about the paper by Maslov [74] which was discovered in 2005
in [64].

Rabin and Scott [83] also considered the operation of Kleene closure, called star in

this thesis. They provided a construction of an NFA for the closure of a language which

sc Results in [74] |X| Results in [94]  [X]
KNL mn 2
KUL mn 2 mn 2
KL (m—1)2" 4201 2 m2n — k2n-1 3
unary case mn; ged(m,n) =1 1
L (3/4)2" o | onlyonlok 9
unary case (n—1)2+1 1
L% 2" (Mirkin, Lupanov) 3 2" (Leiss) 3

Table 3.1: The state complexity of operations from Maslov [74| and Yu, Zhuang, Salomaa
|94]; k is the number of states in the first automaton in the case of concatenation and it

is the number of final states which are not initial in the case of star.
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gave an upper bound (3/4)2" for the size of DFA accepting this operation. Maslov |74]
provided a binary witness meeting this upper bound.

If we require that the languages belong to certain subclass of regular languages, then
the complexity of some operations may be smaller. Yu et al. [94] considered also the state
complexity of operations on unary languages. They have shown that the state complexity
of star on unary languages is (n — 1)? + 1, unlike on binary languages where it is (3/4)2".
In 1999, Nicaud [80| provided the tail-loop structure of minimal unary DFAs. Unary
languages were investigated in more detail by Pighizzini and Shallit in 2002 [82]. The
complexity of operation on other subclasses of regular languages were also considered,
for example, finite languages by Campeanu et al. in 1999 [16] and co-finite language
by Bassino et al. in 2010 [1]. Jiraskova examined union-free languages with Masopust
[61] and with Nagy [63]. The class of star-free languages was considered by Brzozowski
and Liu [13]. The class of non-returning languages was investigated by Eom, Han, and
Jiradskova in 2016 [30].

The subclasses of languages from Section 1.3 are defined by partial orders on strings,
such as prefix, suffix, factor, and subword. State complexity of operations in the class of
prefix-free regular languages was investigated by Han, Salomaa, and Wood in 2006 |37].
In 2009, Han and Salomaa examined the state complexity of operations on suffix-free

languages [35]. In these papers, the following was observed.

Fact 3.1 (|35, 37]).
(a) A minimal DFA recognizes a prefiz-free language if and only if it is non-exiting.

(b) If a minimal DFA recognizes a suffiz-free language, then it is non-returning. [

In 2011, Cmorik provided a sufficient condition for a DFA to accept a suffix-free

language.

Lemma 3.2 (|23, Lemma 1|). Let A be a DFA such that
(1) A is non-returning,
(2) A has a unique final state, and

(3) each state of A has at most one in-transition on every input symbol.

Then L(A) is suffiz-free. O

In 2010, Brzozowski [9] proposed the notion of the quotient complezity which has the
same value as the state complexity for every regular language. State/quotient complexity
of operations were considered by Brzozowski et al. in 2013 on ideal languages [10], and in
2014 on bifix-, factor-, and subword-free languages [14] and closed languages [11]. In these

papers, the square operation, which is defined as the second power of a language, was not
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considered. This operation was investigated by Cevorova on free, ideal, and prefix-closed
languages in 2015 [18] and on suffix-, factor-, and subword-closed languages in 2016 [19].

It is known that in the unary case, all four subclasses of free languages coincide; sim-
ilarly for ideal, closed, and convex languages. The following straightforward observation

shows the structure of unary languages belonging to these classes.

Fact 3.3. (a) A unary free language is either empty or consists of one string, so it is of
the form {a‘} for some non-negative integer .

(b) A unary ideal language is either empty or of the form {a' | i > (} for some
non-negative integer f.

(c) A unary closed language is either empty or universal or of the form {a' | 0 < i < {}
for some non-negative integer £.

(d) A unary convex language is either unary ideal or of the form {a' | k < i < {} for

some non-negative integers k, £. ]

We can determine the descriptional complexity of unary finite languages. Let L
be a unary finite language with the longest string of length ¢. Then nsc(L) = ¢ + 1
since {(a’,a’*"%) | 0 < i < ¢} is a fooling set for L (with longer mismatched concatena-
tions), and sc(L) = ¢ 4 2 since we have to add the dead state.

The nondeterministic state complexity of a language L is the smallest number of states
in any NFA for L. Although it was examined already in 1992 by Birget [4], the systematic
research of nondeterministic state complexity began with the paper by Holzer and Kutrib
in 2003 [40]. Birget in [4] and [5] proposed the fooling set method to prove lower bounds
on the number of states in nondeterministic finite automata. It was modified to the
AB-fooling set method |61| which also works for NFAs with a unique initial state. Some
results of [40] were improved by Jiraskova in 2005 [57] who provided binary witnesses for
the already tight upper bounds n + 1 for reversal and 2" for complementation.

Nondeterministic state complexity of operations on subclasses of regular languages was
investigated in 2009 by Han, Salomaa, and Wood for prefix-free [38], in 2010 for suffix-free
by Han and Salomaa [36], in 2011 for union-free by Jiraskova and Masopust [61], and in
2012 for star-free languages by Holzer, Kutrib, and Meckel [42]. Jiraskova and Mlynarcik
[62] improved some results from [36, 38]. In the further papers by Mlynarcik [77, 46, 47],
nondeterministic state complexity of six basic operations on free, ideal, closed, and convex
languages was investigated, and tight upper bounds were obtained for 94 of 96 cases.

The cut operation, inspired by UNIX text processors, was formally defined in 2013 in
a paper by Berglund, Bjérklund, Drewes, van der Merwe, and Watson [2]. The paper [29]
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from 2017 by Drewes, Holzer, Jakobi, and van der Merwe provided tight upper bounds

on the state complexity of the cut operation.

Iwama, Kambayashi, and Takaki in 2000 [53| asked whether all values from n up to 2"
can be obtained as the state complexity of a language accepted by a minimal n-state NFA.
Iwama, Matsuura, and Paterson [54] called the unattainable numbers magic. It was shown
in 2007 by Geffert [33] that in the unary case, there is a lot of magic numbers. However,
no specific one was given. On the other hand, no number is magic if we have an alphabet
of size three, as was shown in 2011 by Jiraskova [58|. The problem is still open for a binary
alphabet, although many numbers were identified as non-magic, and computations show
that no magic numbers exist up to n = 17. The magic number problem on subclasses of

regular languages was examined by Holzer, Jakobi, and Kutrib in 2012 [39].

The magic number problem was originally considered for determinization of NFAs. It
can be generalized also to language operations. Hricko in his master’s thesis [50] showed
that every number from 1 up to mn can be obtained as the state complexity of union
or intersection of languages accepted by minimal DFAs of size m and n. Similar result
for NFAs is present in the dissertation thesis of Szabari [90] where also magic number
problems for determinization and complementation are considered. For complementation,

all values from logn to 2" are attained using an alphabet of size five [60].

Cevorova in 2013 [17] examined the magic number problem for star on unary languages,
and contrary to the result of Geffert [33|, who only prove the existence of magic numbers
for unary determinization but did not specify any of them, she was able to find two specific
contiguous ranges of magic numbers of length n in the range from 1 to (n — 1)% + 1.
Nevertheless, there are still quadratically many numbers with unknown magic status,
and the smallest magic number is not known. Jiraskova, Palmovsky, and Sebej [65] have
shown that every number from 1 up to (3/4)2" is attainable as the state complexity of star
of an n-state DFA language. Similarly, every number from logn up to 2" is non-magic for
reversal, as shown by Sebej |87]. Jiraskova, Szabari, and Sebej in 2017 [68] have shown
that the full range is attainable also for concatenation. However, all these three results
used a linearly growing alphabet. The magic number problem for star, reversal, and
concatenation on a fixed alphabet is still open. Results on the magic number problems

are shown in Table 3.2.

Accepting state complexity was introduced by Dassow in 2016 [25]. He considered the
infinite hierarchy of regular languages with respect to the minimal number of accepting
states in DFAs. He asked, which values can be obtained as an accepting state complexity of

languages resulting from a regular operation with accepting state complexity of operands
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Operation Range Magic numbers | |3| | Source
NFA-to-DFA conversion [n, 2"] no 3 [58]
DFA union, intersection [1, mn] no 2 [50]
NFA union [1,m+n+ 1] 1no 2 [90]
NFA complementation [log n, 2" no 5 [60]
DFA reversal [logn, 2" 1o 2n | [87]
DFA star [1,(3/4)2"] no 2n | [65]
DFA concatenation [1,m2" — 2771] no 2n | [66]

Table 3.2: The known results on ranges of (nondeterministic) state complexities for some

operations.

given as a parameter. Finding these numbers is also a variant of the magic number
problem. His results are summarized in Table 3.3.

In 1980, Brzozowski and Leiss [12] introduced Boolean finite automata (BFAs). In
1981, Chandra, Kozen, and Stockmeyer [21], considered a similar notion, alternating
finite automata (AFAs). In 1990, Fellah, Jirgensen, and Yu [32| defined alternating
finite automata as Boolean automata with one initial state. They provided automata
constructions for complementation, intersection, union, star, and concatenation. This

gave the upper bounds that are displayed in the first column of Table 3.4.

Operation Range Magic numbers | |X]
complementation || NU{0 |n =1} no 1
union N no 1
concatenation N no 1
difference {0} UN no 1
star N no 1

Table 3.3: Results obtained in [25]. The languages K and L have accepting state com-
plexity m and n, respectively, for m,n > 1. The range indicates the attainable accepting
state complexities of the operation under consideration and the status of the magic num-

ber problem refers to whether or not there exist magic numbers in the given range.
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AFA DFA |X| | NFA |2
complementation | n n 1 2" 2
intersection <m+n+1 mn 2 mn 2
union <m+n+1 mn 2 m+n+1 2
concatenation <2M4n+1 m2" — 21 2 m+4+n 2
reversal <2"+1 AL 2 n+1 2
star <"1 %2” 2 n+1 1
left quotient <m+1 2m —1 2 m—+1 2
right quotient <2m4+1 m 1 m 1

Table 3.4: The complexity of operations on languages represented by AFAs, DFAs, NFAs.
The results for DFAs are from [67, 74, 94|, the results for NFAs are from [40, 57|, and the
results for AFAs are from [32] and [59].

It is known [32, Theorem 4.1, Corollary 4.2] and [59, Lemma 1, Lemma 2| that a lan-
guage L is accepted by an n-state AFA if and only if its reversal L¥ is accepted by
a 2"-state DFA with 27! states final. Hence to get a lower bound for some operation on
AFAs, we need witness languages represented by DFAs with half of states final that are
hard for this operation on DFAs. Moreover, this operation must commute with reversal.
The first column of Table 3.4 shows known upper bounds on complexity of considered
operations on languages represented by AFAs. The second and third column show known
results on complexity of these operations for DFAs and NFAs.

In 1996, Birget [6] examined the descriptional complexity of the forever operation
defined as L — (Z*LC)E. He considered different complexity measures based on represen-
tation of languages by DFAs, NFAs, and AFAs and obtained several trade-offs between
these models. His results are provided in Table 3.5.

L\ (Z*L5C | DFA |¥| | NFA 2| | AFA 3|
DFA gn=l 9 | gl 3 | <n+1
NFA -l <ol 4] 3 [ <n+1
AFA < ontl 4 q <n-+1

Table 3.5: Results of Birget [6] on the descriptional complexity of the forever operator.
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Chapter 4

Concatenation on Deterministic

and Alternating Finite Automata

Concatenation is a binary operation on formal languages K and L defined as
KL ={uwv|ue€ K and v e L}.

This operation is regular, which means that if K and L are regular languages, than KL
is also a regular language. Let A = (Qa,%, 4,54, Fa) be a DFA for K with |Q4| = m
and |Fa| = k. Next, let B = (Qp,%, 5, Sp, F's) be a DFA for L with |Qg| = n such
that Q4 and Qg are disjoint. We construct an NNFA N for KL from A and B as
follows: For each state ¢ in )4, each final state f in F4, and each input symbol a, we
add a transition (¢, a, sp) whenever there is a transition (g, a, f) in the DFA A. The set
of initial states of N is {sa} if s4 ¢ F4 and {sa, sg} otherwise, and the set of final states
of N is Fz. Figure 4.1 shows a schematic drawing of the NNFA .

LG - g%@ s

& OO

Figure 4.1: A schematic drawing of the NNFA N for concatenation of L(A) and L(B).
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Figure 4.2: Ternary witnesses of Yu et al. [94] meeting the upper bound m2" — 271,

To prove the upper bound for the state complexity of concatenation, we need to
determinize the NFA N. In the subset automaton D(N), only subsets containing exactly
one state in (4 are reachable since A is deterministic and complete. Moreover, each
subset containing a state in F4 and not containing sp is unreachable. This gives the
upper bound m2" — k2"~ ! on the size of the minimal DFA for KL, as was shown by Yu,
Zhuang, and Salomaa in 1994 [94, Theorem 2.3|. This bound is maximal if £ = 1, and
the lower bound m2" — 2"~! was proven to be tight in [94, Theorem 2.1| using ternary
witnesses shown in Figure 4.2. The authors of [94] left the binary case open, not knowing
about the paper by Maslov from 1970 |74] where the tight upper bound m2" — 2"~! was
proven using binary witnesses shown in Figure 4.3. Before the paper [74] was discovered
in 2005, tightness of the bound m2" — 2"~ on binary languages was shown by Jiraskova

in 2005 [57, Theorem 1| using witnesses shown in Figure 4.4.

In this chapter, we study the concatenation operation on languages represented by
DFAs with more final states. We are motivated by the complexity of concatenation
on alternating finite automata (AFAs). In 1990, Fellah, Jiirgensen, and Yu [32] provided

Figure 4.3: Binary witnesses of Maslov [74] meeting the upper bound m2" —2""1if n > 3.
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Figure 4.4: Jiraskova’s binary witnesses from [57, Theorem 1| meeting the tight upper

bound m2™ — 2"~! for concatenation; we have d = (m —n + 1) mod (m — 1).

constructions for several operations on AFAs, and they provide the upper bound 2" +n+1
for concatenation of languages accepted by m-state and n-state AFAs [32, Theorem 9.3|.
They conjectured that this bound is tight. We have mentioned in Corollary 2.20 that
every language L is accepted by an n-state AFA if and only if its reversal L% is accepted
by a DFA with 2" states and 2"~! final states. Next, we have (KL)? = LEK. Tt follows
that to prove lower bound on the complexity of concatenation on AFAs, it is enough
to find two languages accepted by DFAs with 2™ and 2™ states and half of them final
that are hard for concatenation on DFAs. Jirasek, Jiraskova, and Szabari in 2005 [56]
provided binary witnesses shown in Figure 4.5 meeting the tight upper bound m2" — k271
for every k with 1 < k < m — 1. Jiraskova in 2012 [59] used these languages to prove
the lower bound 2™ + n for concatenation on AFAs. However, she did not realize that
the witnesses from [56] do not work if the second DFA has more than one final state.
Moreover, there is an error in the proof of Theorem 1 in [56]. The aim of this chapter is
to fix this error and to show tightness of the upper bound 2™ +n+1 for concatenation on

AFAs. We also provide some other results concerning concatenation on DFAs with more

Figure 4.5: Binary witnesses of Jirasek et al. [56] meeting the upper bound m2" — k21,
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final states.
This chapter is based on the published paper which can be found in Appendix [A] at the
end of this thesis:

Hospodar, M., Jiraskova, G.: The complexity of concatenation on deterministic and
alternating finite automata. RAIRO — Theoretical Informatics and Applications 52
(2018), pp. 153-168.

We inspect three worst-case examples from the literature |74, 94, 56|, and modify them
by making k states in the first automaton final.

In [A, Lemma 4.3], we show that if we take the ternary witnesses of Yu et al. from
Figure 4.2 and make the last k states in A final, then the upper bound m2" — k2"~ ! is
tight whenever m,n >2and 1 <k <m — 1.

In [A, Lemma 4.4, we show that also Maslov’s binary witnesses from Figure 4.3,
modified to have the last k states final in A with 1 < k < m — 1, meet the upper bound
m2" — k271 if m > 2 and n > 3.

In [A, Lemma 4.5], we provide a correct proof of [56, Theorem 1], showing that the
languages accepted by DFAs shown in Figure 4.5 meet the upper bound m2" — k2"~! on
the complexity of concatenation for every m,n, k with n > 2.

Our next goal is to describe, for all m,n, k,¢ with n > 2, two DFAs of m and n
states, and k and ¢ final states, respectively, meeting the upper bound m2" — k2"~! on
the complexity of the concatenation of their languages. We try to modify the witness
automata in all cases, by making the second half of their states final. The upper bound
in such a case is 3m - 2"~2. Table 4.1 shows that none of the three witnesses presented in
papers [56, 74, 94] meets this bound. Even making two states final in DFA B results in
a complexity of concatenation less that the upper bound in all three cases. Therefore we

present new pairs of witness languages.

Upper Bound | Maslov 1970 [74] | Yu et al. 1994 [94] | Jirasek et al. 2005 [56]
2 4 6 2 4 6 2 4 6 2 4 6

6 |24 | 96 5t 4 18 6 14 27 6 22 84
41 12 | 48 | 192 || 10 5 35 12 28 54 12 42 156
18 | 72 | 288 || 15 6 52 18 42 81 18 63 225

Table 4.1: State complexity of concatenation of L(A) and L(B) if the witness languages
from [56, 74, 94] have the second half of their states final; in rows we have m, in columns n.
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Figure 4.6: Ternary witnesses from [A, Theorem 4.6|, meeting the bound m2" — k2!

To cover all possible values of m, n, k, £ of the numbers of states and of final states in
the DFAs A and B, we modified the witness from [56, Theorem 1| by defining transitions
on a new symbol ¢, and thus get the ternary witnesses shown in Figure 4.6; the symbol ¢
performs an identity on n — 1 and leads each other state to 0. The modified ternary
automata meet the upper bound m2" — k2"~! for concatenation of their languages; the
proof is in [A, Theorem 4.6]|.

We might ask whether there are binary languages with more final states in B meeting
this bound. We provide a positive answer in [A, Theorem 4.7| using witness languages
accepted by DFAs from Figure 4.7. However, we require k < m — 2 here, that is, the first
DFA must have at least two non-final states. Moreover, we assume that m > 3 and n > 4.
The DFA B is the same as in [28|.

Next we turn our attention to the concatenation of binary languages represented by
an m-state DFA with m — 1 final states and an n-state DFA with more than one final
state. In the general case, the upper bound is (m + 1)2"~!. Theorem 5.1 of |A] provides

a lower bound (m +1)2"~! — 1 which is smaller just by one. Our computations show that

Figure 4.7: Binary witnesses from [A, Theorem 4.7| meeting the bound m2" — k2" 1.
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Figure 4.8: The binary DFAs from [A, Theorem 5.1] meeting the bound (m + 1)2"~! — 1.

no pair of binary languages meets the bound (m + 1)2"~! in the case of m,n < 4. The
witness languages are accepted by DFAs shown in Figure 4.8. The DFA B is the same as
the witness DFA for square in [70] in the case k =n — 1.

Using witness languages from [A, Theorem 4.7|, we get the main result of this chapter.
Recall that sc(L) denotes the smallest number of states in any DFA for L, and asc(L)

denotes the smallest number of states in any AFA for L.

Theorem 4.1 ([A, Lemma 6.4], Concatenation on AFAs: Lower Bound). There
exist binary languages K and L accepted by an m-state and n-state AFA, respectively,
such that every AFA for KL has at least 2™ + n + 1 states, where m,n > 2.

Proof. Let L¥ and K% be the binary languages accepted by the minimal DFAs A and B
from Figure 4.7 with 2™ and 2™ states, respectively, both having half of states final. Then,
by Lemma 2.19, the languages K and L are accepted by an m-state and n-state AFA,

respectively. Since L¥ and K are witnesses for concatenation on DFAs, we get
sc((KL)®) = sc(LEKR) =271 . 22" (1 4+ 1/2),

and therefore asc(KL) > [log(2"!-2%"(141/2))] = 2™ + n by Corollary 2.18.

Our next aim is to show that asc(KL) > 2™ +n+ 1. Suppose for a contradiction that
KL is accepted by an AFA of 2™ +n states. Then, by Lemma 2.17, (K L) is accepted by
a 22" T_state DFA with 22"+~ final states. It follows that the minimal DFA for (K L)%
has at most 22" T"~! final states. However, the number of final states in the minimal DFA
for (KL)% is

9n (22" 4 927y gne (2" 4 92" o),

which is more than 22”471 a contradiction. It follows that asc(KL) > 2™ +n+1. O

The lower bound in the theorem above meets the upper bound from [32, Theorem 9.3],

which solves the open problem stated by Fellah, Jiirgensen, and Yu in 1990 [32].
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Chapter 5

Range of State Complexities for the
Cut Operation

The cut operation is a machine implementation of “concatenation” on UNIX text processors
which behaves greedy-like in its left term of concatenation. Formally, the cut operation

on languages K and L, denoted by K ! L, is defined as
K!'L={wv|ueK,veL,and uv' ¢ K for every non-empty prefix v" of v }.

This operation preserves regularity, as shown by Berglund et al. [2]. The state complexity
of the cut operation on DFAs was obtained by Drewes et al. [29, Theorem 3.1| and it is
given by the following function from N x N to N:

m, ifn=1;
f(m,n) = . (5.1)
(m—1Un+m, ifn>2.
In the unary case, the state complexity of cut is given by the function
(1, if m = 1;
m, ifm>2andn=1;
fi(m,n) = . (5.2)
2m — 1, if m,n>2and m > n;
(m+n—2, ifm,n>2and m <n;

as proven in [29, Theorem 3.2|. Notice that the state complexity of the cut operation
is only linearly growing with both parameters, while the state complexity m2" — 2"~! of

concatenation is growing linearly with m and exponentially with n.
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In this chapter, we show for every value from 1 up to f;(m,n) whether or not it can be
attained by the state complexity of the cut of two unary languages accepted by minimal
DFAs with m and n states. We show that only complexities up to 2m — 1 and between n
and m +n — 2 can be attained, while complexities from 2m up to n — 1 turn out to be
magic in the unary case. To get these results, the tail-loop structure of minimal unary
DFAs is very valuable in the proofs.

On the other hand, we show that the entire range of complexities, up to the known
upper bound f(m,n), can be produced by the cut operation on minimal DFAs with m
and n states, respectively, in case when the input alphabet consists of at least two symbols.
The proof of this result resembles some ideas used by Hricko [50] and Szabari [90] for the
magic number problem of the intersection and union operations on DFAs.

To the best of our knowledge, this is the first operation where for every alphabet size,
every value in the range of possible complexities is known to be either attainable or not,
and not all values are attainable in the unary case. Hence, the magic number problem
for the cut operation is completely solved in this chapter. The results of this chapter are
based on the conference paper:

Holzer, M., Hospodar, M.: The Range of state complexities of languages resulting
from the cut operation. In: Martin-Vide, C., Okhotin, A., Shapira, D. (eds.): Proc.
13th International Conference on Language and Automata Theory and Applications,
LATA 2019, Saint Petersburg, Russia, March 26-29, 2019. Lecture Notes in Computer
Science, vol. 11417, Springer, pp. 190-202 (2019).

Since we are interested in the state complexity of languages resulting from the cut
operation, we briefly recall the construction of a DFA for the cut operation. For two
languages accepted by DFAs A and B with m and n states, respectively, we can construct
the cut automaton A!B as follows. The cut automaton has states in a grid like the
product automaton A x B, plus one additional column which we denote by L. The
column L corresponds to the situation that we have not read a string in L(A) yet. When
we reach a final state in A for the first time, we leave the column L and enter the product
part of A!B in the corresponding state. Unless we reach a final state of A again, the
transitions in A! B are the same as in the product automaton A x B. When we reach a
final state in A again, we reset to a state in the column for the initial state of B. This
corresponds to the situation that we have read a longer string in L(A), and therefore we
need to reset the computation of B to its initial state. The final states of A! B are all

states in columns corresponding to the final states of B.

36



Formally, let A = (Qa,%,04,54,F4) and B = (@p,%,05,S5, F'5) be two DFAs.
Let L ¢ Qp. Define the cut automaton

AIB=(Q = (Qux {L})U(Qa x Qn),%,6,5,Q4 x Fg)

where s = (s4, L) if ¢ ¢ L(A) and s = (sa, sp) otherwise, and for each state (p,q) in Q

and each input symbol a in ¥ we have

(0a(p,a), L), ifda(p,a) ¢ Fa;

o((p, L),a) = ,
(6a(p,a),sp), otherwise;

and

5(p.g).a) — | 0ap-0):05(0.@)). if 3a(p.a) ¢ P

(0a(p,a),sg), otherwise.
Then L(A!B) = L(A)! L(B). Figures 5.1, 5.3, 5.2, and 5.4 show the schematic drawings
of A and B, as well as the cut automaton A!B. The DFA A is drawn in the column in
the left part of each figure, and the DFA B is drawn in the row in the top part of each
figure.

’

ol
olgal

Figure 5.1: The DFAs A and B and the cut automaton A!B. Here, r = d4(q,a) is the

first final state in a computation in the DFA A. Since r is a final state of A, no state

except for (r,sp) is reachable in row r of the cut automaton A!B. The transitions in

column 1, are the same as the corresponding transitions in A going to a non-final state.
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Figure 5.2: The DFAs A and B and the cut automaton A!B. We have r = d4(p,a),

s =6p(q,a), and r is non-final in A, hence we proceed like in the product automaton Ax B.

(@) - () -
P

@)

Figure 5.3: The DFAs A and B and the cut automaton A!B. We have r = d4(p, a), and

the state r is final in A, hence we reset the computation in A! B to the state (7, sp).

0| &)-6-6-

Figure 5.4: The DFAs A and B and the cut automaton A!B. Since the state s is final
in B, each state (p,s) is final in A! B.
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For better understanding of the cut operation, we present the following example.

Example 5.1. Consider DFAs A and B shown in Figure 5.5 (left) and (top). Since the
initial state of A is non-final, the initial state of the cut automaton A! B is (0,L1).

(1) After reading a, the DFA A is in a non-final state, therefore in A! B there is the tran-
sition from (0, L) to (1, L) on a. After reading the second a, the DFA A is in the final
state 2, therefore the cul automaton enters its product part in the state (2,0). Simi-

larly, after reading aba, the cut automaton enters its product part in the state (4,0).

(2) In the product part, A! B behaves like the ordinary product automaton A x B provided
that the current transition sends the first component to a non-final state of A, see,
for example, the transitions from (0,0) to (1,0) on a or from (0,0) to (0,1) on b.

(3) Otherwise, if the current transition sends the first component to the final state 2
or 4, the computation of the cut automaton is reset to the corresponding state (2,0)

or (4,0), respectively, in column 0.

(4) The set of final states of A! B consists of all states in columns 1 and 3.

The cut automaton is not minimal: if p 1s a final state of A, then all states in row p

except for (p,0) are unreachable. In our example, also the state (1,1) is unreachable.

Bﬂ@b@:

Figure 5.5: An example of DFAs A and B with m = 5 and n = 4 and their cut automa-
ton A! B; notice that the state (1,1) is unreachable.

In what follows, all our figures display only the reachable states of cut automata.
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To help the reader to become even more familiar with the cut operation, we prove the
following two observations. The first one considers the case when the first language is

a right ideal.

Proposition 5.2. Let K be a right tdeal over 33, that is, a language satisfying K = KX*.
Then

K, ifeeL;
KL=
0,  otherwise.

Proof. By definition of the cut operation, we have
K!'L={w|ue€ K, veL,and ww' ¢ K for every non-empty prefix v’ of v}.

If e € L, then K C K!L since for every w in K we have w = w - with ¢ € L and the
set of non-empty prefixes of ¢ is empty. Conversely, we have K!L C KL C K¥* = K
since K is a right ideal.

Now let ¢ ¢ L. If K = () or L = (), then KL = (), so K!L = ) by definition.
Otherwise, let u € K and v be a non-empty string in L. Since K is a right ideal, uv’ € K
for every non-empty prefix v" of v. Thus no string uv can be in K'! L, and the proposition
follows. O

Our second observation shows that if the second language is universal, the cut opera-

tion acts like ordinary concatenation.
Proposition 5.3. Let K be a language over an alphabet . Then K!¥* = KX*.

Proof. We have K |3* C K¥* by definition. Let w € K3*. Then w = uv for some u € K
and v € X*. Let v be the longest non-empty prefix of v such that uv’ € K. Then
we have w = wv'v” and wv' - 0" € K!¥*. Hence KX* C K!X* and the stated claim
follows. O

5.1 The Cut Operation on Unary Regular Languages

When working with unary DFAs, we use the notational convention proposed by Nicaud
in [80]. Every unary DFA consists of a tail path, which starts from the initial state,
followed by a cycle of one or more states, called the loop. Therefore a unary DFA is
totally determined by the number of states, the loop number given by the length of the
tail path, and the set of final states.
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Let A = (Q,{a},d,s,F) be a unary DFA with |Q| = n. We can identify the states
of A with integers from [0,n — 1] via ¢ — min{ i | 6(s,a’) = q }; recall that [, j] denotes
the set {i,i+1,...,7}. In particular, the initial state s is mapped to 0. Let £ = (s, a™).
Then the unary DFA A with n states, loop number ¢ with 0 < ¢ <n — 1, and set of final
states F' with F' C [0,n — 1] is referred to as A = (n, ¢, F'). The following characterization

of minimal unary DFAs is known.
Lemma 5.4 (|80, Lemma 1|). A unary DFA A = (n,(, F) is minimal if and only if
1. its loop 1s minimal, and

2. if £ # 0, then statesn — 1 and £ — 1 do not have the same finality, that is, exactly

one of them 1is final; see Figure 5.6 for an illustration.

D O

Figure 5.6: The structure of a minimal unary DFA; states £ — 1 and n — 1 do not have

the same finality.

Now we are ready for our first result on the state complexity with respect to the cut
operation of unary regular languages represented by DFAs. In a series of lemmas we
consider the state complexity « of the resulting language in increasing order of a. The

first interval we are going to discuss is [1,m)].

Lemma 5.5. Let m,n > 1 and 1 < a < m. There exist a minimal unary m-state DFA A
and a minimal unary n-state DFA B such that the minimal DFA for L(A)! L(B) has «

states.

Proof. The proof has five cases:

(1) Let m = 1, so we must have a = 1. Let A be the one-state DFA accepting the
empty language and B be the minimal n-state DFA for a" 'a*. Then L(A)!L(B) =0

which is accepted by a minimal one-state DFA.

(2) Let m > 2 and n = 1. Let A be the minimal m-state DFA for ¢®~'(a™)* and B
be the one-state DFA for a*. The reachable part of the cut automaton A! B consists of
the tail of non-final states (7, L) with 0 < i < o — 2 and the loop of final states (i,0)
with 0 < ¢ < m — 1; see Figure 5.7 for an illustration. Since all the final states are
equivalent, the minimal DFA for L(A)! L(B) has « states.
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Figure 5.7: An example of the DFAs A and B and the cut automaton with m =4, n =1,

and o = 3 for case 2 of Lemma 5.5.

(3) Let m,n > 2 and o = 1. Consider the unary languages a™ 'a* and a"~'a* accepted

by minimal DFAs A and B of m and n states, respectively. Then the reachable part of
the cut automaton consists of the tail of non-final states (¢, L) with 1 <i < m — 2 and
the loop consisting of a single non-final state (m — 1,0); see Figure 5.8 and notice that 0 is

a non-final state in B. Hence L(A)! L(B) is the empty language accepted by a one-state

DFA. l fﬂ@ N
A @ Q

|

e

Figure 5.8: The DFAs A and B and the cut automaton for case 3 of Lemma 5.5.

Ao
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(4) Let m > 2, n =2, and 2 < a < m. Consider the unary languages K and L defined
as follows. If m — « is even, then let K = {a*2,a™ 2} and L = a(aa)*, otherwise,
let K = {a*',a™ 2} and L = (aa)*. The minimal DFAs for K and L have m and 2
states, respectively, see Figure 5.9 for an illustration of an example with m = 8. We

have K ! L = a® *(aa)*, which is accepted by a minimal a-state DFA.
701 010
( ) A — ( )

1
[\
Q
L

olololclolcleles
5o
olololeloloelo
dmeme

Figure 5.9: The minimal DFAs for K and L with m = 8 and n = 2 for case 4 of Lemma 5.5.
In the left figure, we have a = 4, so m — « is even, and in the right figure, we have o = 3,

so m — a is odd. The minimal DFA for K'! L has a states in both subcases.

(5) Let m > 2,n > 3, and 2 < a < m. Consider the DFAs A = (m,a—2, [a—1,m—1])
and B = (n,n — 1,[0,n — 2]). By Lemma 5.4, the DFAs A and B are minimal. The
reachable part of the cut automaton consists of the tail of @ — 1 non-final states and

of the loop of m — a + 2 final states, as illustrated in Figure 5.10. Hence the minimal
DFA (o, — 1,{av — 1}) for L(A)! L(B) has « states. O
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Figure 5.10: The DFAs A and B and the cut automaton for case 5 of Lemma 5.5.

Our next interval is [m + 1,2m — 1]; ¢f. fi(m,n) defined by (2) on page 35.

Lemma 5.6. Let m,n > 2 and m+1 < a < 2m—1. There exist a minimal unary m-state
DFA A and a minimal unary n-state DFA B such that the minimal DFA for L(A)! L(B)

has o states.

Proof. We have a = m + (3 for some integer g with 1 < g < m — 1. Consider the unary
DFA A = (m,0,{B}). Define the unary DFA B as follows:

(n,0,{m —1}), if m <mn;
(n,n —1,{n —1}), otherwise.

B =

By Lemma 5.4, the DFAs A and B are minimal. If m < n, then L(A)!L(B) is accepted
by the DFA (a, 8,{a — 1}), see Figure 5.11 for m = 5, n = 6, and o = 7; otherwise,
it is accepted by the DFA (a, 8,[n 4+ 8 — 1, — 1]), see Figure 5.12 for m = 6, n = 5,
and o = 10. The resulting DFA is minimal by Lemma 5.4. O
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Figure 5.11: An example of the DFAs A and B and the cut automaton for Lemma 5.6,

case m < n; we have m =5 n=06,and a ="7,s0 § = 2.

o~(0 )=

N

OO0
(BB
E

Figure 5.12: An example of the DFAs A and B and the cut automaton for Lemma 5.6,

case m > n; we have m = 6, n = 4, and a = 10, so § = 4.
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The last interval we are considering in this series of lemmas is [n,m + n — 2].

Lemma 5.7. Let mn > 2, a > m, andn < a < m+n — 2. There exist a minimal
unary m-state DFA A and a minimal unary n-state DFA B such that the minimal DFA
for L(A)! L(B) has « states.

Proof. Consider the DFAs A = (m,m — 1,{m — 2}) and B = (n,0, {ae — m + 1}) which
are minimal by Lemma 5.4; notice that 1 <a—m+1<n—1. The DFAs A and B and
their cut automaton are illustrated in Figure 5.13 for case m =4, n =5, and a = 6.

In the cut automaton A!B, the states (m — 2,0) and (m — 1,0) are non-final and
both of them are sent to (m — 1,1) on a, hence they are equivalent. Next, for each ¢
with 1 <i <n—a+m— 2, the states (m —2—14, L) and (m — 1,n — 1) are equivalent as
well; notice that n —a+m —2 > 0 since « < m+n — 2. To get the minimal DFA for the
cut, we redirect the out-transition from the state (m—1,«—m+1) to the state (¢ —n, L)
if « < m+n—3 and to the state (a« —n,0) if « = m+n—2. Since m—1+(a—m+1) = q,
the resulting minimal DFA for L(A)! L(B) has « states. O

For certain values of m and n, the intervals stated in the previous lemmas may not be
contiguous. For instance, if m = 2 and n = 5, then the intervals from Lemmas 5.5, 5.6,
and 5.7 cover {1,2,3,5}. Hence the value 4 from the interval [2m,n — 1] is missing. In
fact, we show that whenever this interval is non-empty, these values cannot be obtained

by an application of the cut operation on minimal DFAs with m and n states.

a—m-+1

(g p0.0,0,0.

(-

SONN0.0,0,0.0

Figure 5.13: An example for the DFAs A and B and the cut automaton for Lemma 5.7;

we have m =4, n =5, and o = 6.
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Lemma 5.8. Let m,n > 2 be numbers satisfying 2m < n — 1. Then for every a such

that 2m < a < n—1, there exist no minimal unary m-state DFA A and minimal unary n-
state DFA B such that the minimal DFA for L(A)! L(B) has « states.

Proof. We discuss two cases depending on whether L(A) is infinite or finite.

If L(A) is infinite, then A must have a final state in its loop. Denote the size of
the loop in A by ¢ and the smallest final state in the loop of A by j. Consider the cut
automaton A!B. Notice that its initial state is sent to the state (j,0) by the string a’.
Next, the state (j,0) is sent to itself by the string a’. It follows that A!B is equivalent
to a DFA (j + ¢, 7, F) for some set F' C [0,5 4+ ¢ — 1]. Since j < m — 1 and ¢ < m, the
DFA for L(A)!L(B) has at most 2m — 1 states.

If L(A) is finite, then A has a loop in the non-final state m — 1 and the state m — 2
is final. TLet A = (m,m — 1,F) and B = (n,¢, F’) be minimal unary DFAs for some
sets ' C [0,m — 1] and F’ C [0,n — 1]. It follows that in the cut automaton A!B, the
state (m — 2,0) and the states (m — 1, j) with 1 < j <n — 1 are reachable. Two distinct
states (m — 1,j) and (m — 1,j') are distinguishable by the same string as the states j
and j"in B, and the state (m — 2,0) and a state (m—1, j) are distinguishable by the same
string as the states 0 and j are distinguishable in B. It follows that the cut automaton

has at least n reachable and pairwise distinguishable states, and the theorem follows. [J

Now let us summarize the results of this section; recall that by (2) on page 35, the

state complexity of the cut operation on unary languages is given by the function

1, if m=1;

m, it m>2andn=1;
fl(man): .

2m — 1, if m,n>2and m > n;

(m+n—2, ifm,n>2and m<n.

Theorem 5.9 (Unary Case). For every m,n,a > 1 such that
(a) a=11ifm=1,
(b)1<a<mifm>2andn=1, or
(c)1<a<2m—1lorn<a<m+n-—2ifmmn>2,
there exist a minimal unary m-state DFA A and a minimal unary n-state DFA B such
that the minimal DFA for L(A)! L(B) has « states. If m,n > 2 and 2m < a < n — 1,
then there do not exist minimal unary m-state and n-state DFAs A and B such that the
minimal DFA for L(A)! L(B) has « states. O
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5.2 The Cut Operation on Binary Regular Languages

Next we consider the range of state complexities of languages resulting from the cut
operation on regular languages over an arbitrary alphabet. The aim of this section is to
show that the entire range of complexities up to the known upper bound can be produced
in this case, even for languages over a binary alphabet. First we show that the numbers
in [1,m +n — 2] are attainable in the binary case. The values in [1,2m — 1] as well as the
cases of m = 1 and n = 1 are covered by Theorem 5.9 since adding dummy input symbols

or duplicating them does not change the state complexity.

Lemma 5.10. Let m,n > 2 and 2m < a < m +n — 2. There exist a minimal bi-
nary m-state DFA A and a minimal binary n-state DFA B such that the minimal DFA
for L(A)! L(B) has « states.

Proof. Notice that in this case we must have m < n — 2, so m < n. Consider the binary
DFA A= ([0,m —1],{a,b}, 4,0, {m — 1}), where

. . _ (t+1)modm, ifi#m—2,
da(i,a) = (i+1)modm and §4(i,0) =
m— 2, otherwise.

Next, consider the binary DFA B = ([0,n — 1], {a, b}, 5,0, {m — 1}), where

'+ 1) modn, ifj#a—m,
0p(j,a) = (j+ 1) modn and 6p(j,b) = (G+1) j#
m—1, otherwise.

Both automata A and B are depicted in Figure 5.14.

b
N ab
5 0)e... 2 a@a AN a. ..
b b b b b, b b b
a,b

v\

Figure 5.14: The DFAs A (top) and B (bottom) for the case 2m < a <m+n — 2.
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Figure 5.15: The cut automaton for the DFAs in Figure 5.14.

In the cut automaton A! B we consider the following sets of states:

Ri={(GL)|0<i<m—-2}U{(m—-1,00}U{(i,i+1)|0<i<m-—3},
Ro={(m—=2,)|m—-1<j<a—m}.

Each state in Ry U{(m —2,m — 1)} is reached from (0, L) by a string in a*, and each
state in Ry is reached from (m — 2,m — 1) by a string in b*. Figure 5.15 shows that no
other state is reachable in the cut automaton.

To prove distinguishability, notice that two distinct states in R; are distinguishable
by a string in a¢* and two distinct states in R, are distinguishable by a string in b*. The
states (i, L) in R, are distinguishable from each state in Ry by a string in b*. Every other
state in Ry is distinguishable from each state in R by a string in a*. Since |R1URs| = «,

our proof is complete. O]

Since the state complexity of the cut operation in general is higher than in the case of
unary languages, we have to consider also the remaining interval [m+n—1, (m—1)n+m].
This is done in the following steps, cf. [90, Subsection 4.2.1]:

1. First we show that some values of «, corresponding to the number of states of the cut
automaton in the first » rows and the first s columns, see Figure 5.16, are attainable,

namely o« =1+ (r — 1)n+ (m — r)s for some r,s with 2 <r <m and 1 <s <n.
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Figure 5.16: A schematic drawing of the reachable part of A! B for the first task.

2. Then we show that all the remaining values of a up to (m — 1)n + 1 are attainable.
3. Finally, we show that all the values of ain [(m—1)n+2, (m—1)n+m] are attainable.
Let us start with the first task.

Lemma 5.11. Let m,n > 2 and let r, s be any integers such that2 <r < mand1 < s <n.
Then there exist a minimal binary m-state DFA A, ; and a minimal binary n-state DFA B, ¢
such that the minimal DFA for L(A, ) ! L(B,s) has exactly 1+ (r —1)n+ (m —r)s states.

Proof. Our aim is to define the binary DFAs A, = ([0,m — 1],{a,b},d4,0,{0}) and
B,s=([0,n—1],{a,b},0p,0,{n—1}) in such a way that in the DFA A, ;! B, ; the states
in the following set would be reachable and pairwise distinguishable:

R={0,00}u{(i,j)]|1<i<r—land0<j<n-1}
U{@G,j)|r<i<m-land0<j<s—1}.

Moreover, we have to guarantee that no other state of the cut automaton is reachable.
Because |[R| =1+ (r — 1)n+ (m —r)s, the DFAs A, ; and B, s will be the desired DFAs.
To this aim, we define 64 and dp as follows:
. _ _ 7, ifi<r—1;
da(i,a) = (i+1) modm and 0d4(i,b) =
r—1, ifi>r;
and
: : : Js ifj<s—1
0(7,) =(j+1) modn and 0g5(j,a)=
s—1, ifj>s.
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Figure 5.17: The DFAs Aj3 (left) and B3 (top) with m = 7 and n = 8 and the cut

automaton As 3! Bs 3.

Figure 5.17 shows DFAs A3 (left) and Bss (top) with m = 6 and n = 5, and the
corresponding cut automaton.

In the cut automaton A, !B, , the state (0,0) is the initial state, each state (i, j)
in R with 4 < r — 1 is reached from (0,0) by a’®’, and each state (¢,7) in R\ {(0,0)}
with j < s—11is reached from (0,0) by ab’a’~!. To show that no other state is reachable,
notice that each state (i,j) in R goes on a to a state (i, j') where j/ < s — 1, and it goes
on b to a state (i, j"”) where i” < r — 1. Since both resulting states are in R, no other
state is reachable in the cut automaton.

It remains to prove the distinguishability of states in R. The state (0,0) and any
other state in R are distinguishable by a string in b*. Two states in different columns
are distinguishable by a string in b* since exactly one of them can be moved to the
column n — 1 containing the final states of the cut automaton. Two states in different
rows are distinguishable by a string in a* since exactly one of them can be moved to the
state (0,0). This proves distinguishability and concludes the proof. O

In the above lemma we obtained the values a,  in [m +n — 1, (m — 1)n + 1] that

correspond to the number of states in the first r rows and the first s columns of the

o1



cut automaton. We can add one more row and get the value o, using an analogous
construction for automata A,,;, and B,y . Similarly, we can add one more column.
Nevertheless, we still need to get the values between «,, and a,y;, or between a;
and o 541, respectively. Since we have o415 — s =n — s and 11 — Qg = M — 1,

we need to obtain the complexities o, s +t with 1 < ¢t < min{n —s —1,m —r — 1}.

The next lemma produces these complexities.

Lemma 5.12. Let m,n > 2 and let r, s be any integers with 2 <r <m and 1 < s < n.
Moreover, let t satisfy 1 <t < min{n —s —1,m —r — 1}. Then there exist a minimal
binary m-state DFA A, 5, and a minimal binary n-state DFA B, ¢, such that the minimal
DFA for the language L(A, s¢)! L(B,s:) has exactly 1 + (r — 1)n+ (m —r)s +t states.

Proof. Let a, s = 1+ (r —1)n+ (m—r)s. Then in the cut automaton A, ¢! B, s described
in the previous proof, exactly «, , states are reachable and distinguishable. Our aim is
to modify both automata in such a way that the resulting cut automaton has ¢t more
reachable states. To achieve this goal, we modify DFAs A, ; and B, ; as follows.

In A, we replace each transition (r +,b,r — 1) by (r +i,b,r +i—1),if2 <i <t
and ¢ is even. Since i <t < (m —r) — 1, we have r +¢ < m — 1. In B, ; we replace each
transition (s + 4,a,s — 1) by the transition (s +i,a,s +i—1),if 1 <4 <t and 7 is odd.
Since i <t < (n—s)—1, we have s +i < n — 1. Denote the resulting DFAs by A, ,;
and B, s, respectively; see Figure 5.18 for an illustration in case m =7, n =8, r = 3,
s=3,and t = 3.

Consider the cut automaton A, ;! B, ;. Let R be the same set as in the previous
proof. Then each state (4, ) in R with 4 < r — 1 is reached from (0,0) by a‘0’/, and each
state (4,7) in R\ {(0,0)} with j < s — 1 is reached from (0,0) by ab/a’~'. Next, if i is
odd, then each state ¢; = (r, s +i — 1) is reached from (r — 1, s+ i) by a, and otherwise,
each state ¢; = (r +1i — 1,s) is reached from (r +4,s — 1) by b.

Now, let us show that no other state is reachable. Notice that each state in R goes
either to a state in R or to a state in {q1,¢2,...,¢} on a and b; each state (r — 1, s + 1)
with i even goes to (r,s — 1) on a, and each state (r +i,s — 1) with ¢ = 0 or ¢ odd goes
to (r — 1,s) on b. Next, each state ¢; with i odd goes to the state (r + 1,s — 1) on a
and to a state in row r — 1 on 0. Finally, each state ¢; with ¢ even goes to a state in
column s — 1 on a and to the state (r — 1,5+ 1) on b. Since all the resulting states are
in RU{q,q,---,q}, no other state is reachable in the cut automaton.

The proof of distinguishability is exactly the same as in Lemma 5.11. [
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Figure 5.18: The DFAs A333 (left) and B;33 (top) with m = 7 and n = 8 and the cut

automaton As 33! B335 where some transitions are not displayed.

In Lemmas 5.11 and 5.12, we have produced all values in the range from m +n — 1
up to (m — 1)n + 1. It remains to show that the complexities from (m — 1)n + 2 up

to (m — 1)n + m are attainable as well.

Lemma 5.13. Let m,n > 2 and (m—1)n+2 < a < (m—1)n+m. There exist a minimal
binary m-state DFA A and a minimal binary n-state DFA B such that the minimal DFA
for L(A)! L(B) has ezxactly o states.

Proof. We have

a=m—-1)n+1+p
for some § with 1 < 8 < m — 1. Let A be a minimal m-state DFA over {a,b} that
accepts the strings in which the number of a’s modulo m is 5. Let B be a minimal n-
state DFA over {a,b} that accepts the strings in which the number of b’s modulo n
is n — 1. Figure 5.19 shows the DFAs A and B with m = 6, n = 5, and § = 3, and the

corresponding cut automaton with some transitions not shown.
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Figure 5.19: The DFAs A and B with m = 6, n = 5, and § = 3 and the cut automa-
ton A!B; the transitions (m — 1,5) % (0,5) with 1 < j <n —2and (i,n — 1) 3 (4,0)

with 1 <7 <m — 2 are not shown.

Consider the cut automaton A! B. Denote

Ri={(,L)]i€0,8-1}U{(B,0)},
and

Ro={(i,j)|i€[0,8—-1U[B+1,m—1] and j€[0,n—1]}.

Notice that each state (i, L) in Ry is reachable from the initial state (0, L) by a’, and
each state (i, 0) is reachable by a™*. Each state (i, 7) in Ry is reached from (0,0) by a’t’.
Since the state 3 is a final state in A, it follows from the construction of the cut automaton
that no state (¢, L) with ¢ > § and no state (3, j) with j > 1 is reachable.

To prove distinguishability, let p and ¢ be two different states in Ry U Rs. If p € R4
and ¢ € Ry, then p is a non-final state with a loop on b, while a string in 0* is accepted
from q. If both states p and ¢ are in Ry, then a string in a* leads one of them to the
state ((8 + 1) mod m,0) in R,, while it leads the second one to a state in Ry, and the
resulting states are distinguishable as shown above. Finally, let p and ¢ be two states
in Ro. If they are in different columns, then a string in b* distinguishes them. If they are
in different rows, then a string in a* leads one of them to the state (4,0) in R4, and it

leads the second one to a state in Rs. O
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The next theorem summarizes the results of this section; recall that by (1) on page 35,

the state complexity of the cut operation is given by the function

m, if n=1;

(m—1n+m, ifn>2;

Theorem 5.14 (General Case). Let m,n > 1 and f(m,n) be the state complexity of the
cut operation. For each o such that 1 < o < f(m,n), there exist a minimal binary m-state
DFA A and a minimal binary n-state DFA B such that the minimal DFA for L(A)! L(B)

has « states. ]

Observe that this theorem solves the magic number problem for the cut operation for

every alphabets of size at least two by duplicating input symbols.

5.3 Conclusions

We examined the state complexity of languages resulting from the cut operation on min-
imal DFAs with m and n states. We showed that the range of state complexities of
languages resulting from the cut operation is contiguous from one up to the known upper
bound for every alphabet of size at least two.

Our results in the unary case are different. We proved that no value from 2m up to n—1
is attainable by the state complexity of the cut of two unary languages represented by
minimal deterministic finite automata with m and n states. All the remaining values up
to the known upper bound are attainable.

This means that the problem of finding all attainable state complexities for the cut
operation is completely solved for every size of alphabet. To the best of our knowledge,

the cut operation is the first operation where this is the case.
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Chapter 6

Ranges of Accepting State Complexities

The minimal number of accepting states in any DFA for a language can be considered as
a complexity measure. This complexity measure was introduced by Dassow in 2016 |25].

Formally, the accepting state complexity of a language L, asc(L), is defined by
asc(L) = min{n | L is accepted by a DFA with n accepting states}.

The major contribution of [25] is the investigation of the accepting state complexity
of languages resulting from the operations of complementation, union, concatenation,
difference, and Kleene star. This can be seen as a variant of the magic number problem,
in which we count the number of accepting states instead of the number of all states.

In this chapter, we continue the research concerning the accepting state complexity.
We provide an answer to the open problem from [25] concerning the nondeterministic
accepting state complexity. We also show that the range of accepting state complexities
of languages resulting from the intersection operation is contiguous from 0 to mn, which
solves the second open problem from [25]. Then we consider the operations of symmetric
difference, right and left quotients, reversal, and permutation on binary finite languages.
All of these operations turn out to have an infinite range of accepting state complexities
with no magic numbers. The results of this chapter, except for symmetric difference on

unary finite languages and the cut operation, are based on the published paper

Michal Hospodar, Markus Holzer: The ranges of accepting state complexities of lan-
guages resulting from some operations. In: Campeanu, Cezar (ed.) Proc. 238rd In-
ternational Conference on Implementation and Application of Automata, CIAA 2018,
Charlottetown, PE, Canada, July 30 — August 2, 2018. Lecture Notes in Computer
Science, vol. 10977, pp. 198-210. Springer (2018). ISBN: 978-3-319-94811-9.
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The following result from [25] shows that the accepting state complexity of a lan-

guage L is equal to the number of accepting states in the minimal DFA for L.

Theorem 6.1 ([25, Theorem 1|). Let L be a language accepted by a minimal DFA A.
Then the number of accepting states of A is equal to asc(L). O

Since omitting a dead state does not change the language and does not change the
number of accepting states, we use minimal partial DFAs to describe languages. Moreover,
we only need to prove the distinguishability of accepting states.

Recall that for ¢ € {sc,asc}, a k-ary regular operation o on languages, and non-

negative integers ni, ns, ..., ng, we have
ge(ny,ma, ... ,ng) = {c(o(Ly, Lo, ..., Ly)) | c(L;) =n; fori=1,2,... k},

that is, gS(n1,ng,...,ng) is the set of all integers « such that there exist k regular lan-
guages Ly, Lo, ..., Ly with ¢(L;) =n;, fori =1,2,...,k, and c(o(Ly, Lo, ..., Lg)) = a. In

case we only consider unary (finite, respectively) languages Ly, Lo, ..., Ly we write go*

asc

(g&7, respectively) instead. In order to explain the notation ¢2(ny,ns,...,n;), we give

a small example.

Example 6.2. Complementation is a unary operation denoted LV .= \ L. We have

) ={n}, ifn>1

On the other hand, in [25, Theorem 4] the following behavior was proven:

{1}7 an = 0;
98°(n) = ¢ {O}UN, ifn=1;
N, ifn > 2.

Moreover, all values in these ranges can be attained by unary languages, so we have

g (n) = gi¥(n) and  g&>"(n) = g8 (n). -

The nondeterministic accepting state complezity of a language L, denoted by nasc(L),
refers to the minimal number of accepting states in any NFA for the language L. It
was shown in [25, Theorem 3| that for every non-empty regular language L, we have
nasc(L) =1 if ¢ ¢ L, but nasc(L) < 2 if ¢ € L. Thus, the nondeterministic accepting
state complexity is not very interesting. Nevertheless, it was left open to give a sufficient
and necessary condition for a language L such that nasc(L) = 1 and ¢ € L. The next

proposition solves this problem.
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Proposition 6.3. A language L satisfies ¢ € L and nasc(L) = 1 if and only if L = L*.
Proof. 1f ¢ € L and nasc(L) = 1, then there exists an NFA for L in which the single

accepting state is the initial state. Therefore L = L*.

Conversely, let A = (Q,3,0,s, F) be an NFA accepting the language L. If L = L*,
then € € L, so the initial state s of A is accepting. For every accepting state ¢; in F'\ {s}
and every transition (g, a, qr), we add the transition (¢, a, s) to A and make the state ¢
rejecting. Since L = L*, the resulting automaton, which has exactly one accepting state,
accepts L. It follows that nasc(L) = 1. O

6.1 Intersection and Symmetric Difference

In this section, we examine the accepting state complexity of languages resulting from
the intersection operation, solving an open problem stated in [25].

Recall that for two DFAs A and B, the intersection L(A) N L(B) is recognized by the
product automaton A x B. If A and B have m and n states, respectively, then A x B
has mn states.

In 93] it was shown that this upper bound is necessary in the worst case, that is, it
can be reached by two appropriately chosen DFAs with m and n states. Moreover, in [51]
it was shown that for every a with 1 < o < mn there exist minimal binary m-state and
n-state DFAs such that the intersection of the languages described by these automata is
accepted by a minimal DFA with exactly « states. Thus ¢¥¢(m,n) = [1, mn].

Now consider the accepting state complexity of languages resulting from the intersec-
tion operation. The next theorem solves an open problem stated in [25] by showing that
for every a with 0 < o < mn, there exist minimal binary DFAs A and B with m and n
accepting states, respectively, such that the accepting state complexity of L(A) N L(B) is

exactly a.

Theorem 6.4. We have ¢&°(m,n) = [0, mn]. All values in this range are attained by
binary languages.

Proof. Let 0 < a < mn. We describe minimal partial DFAs A and B with m and n
accepting states, respectively, such that asc(L(A) N L(B)) = a. Notice that a can be

expressed as a = kn + £, for some integers k and ¢/ with 0 < k<mand 0 </ <n-—1.
Define the partial DFA A = ([1,m + 1], {a, b}, 04, m + 1,[1,m]), where

. . ) ) ) 7, if 1 <i<m;
dali,a)=i—1,if 2<i<m+1; da(i, b) =
E+1, ifi=m+1.
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Next, define the partial DFA B = ([0,n + 1], {a,b},05,n + 1,[1,n]), where

. o ‘ J—1, il <j<m
5B(j7a>:na lfj:()a 53(]76): .
l, if j=n+1.
The partial DFAs A and B are shown in Figure 6.1. Both DFAs are minimal.
The product automaton A x B has the initial state (m + 1,n + 1) and the following

transitions shown in Figure 6.2:
S m+Ln+D) S k+1,05 k+1,0-1D) 5 5 k+1,1) 5 (k+1,0),

)
(k+1,00 % (k,n) > (kbn—1) 2 ... 5 (k1) % (k,0),
(

b b

k) S k—1n) S k-1n-1)2 5 *%k-1,1)2 (k—1,0), etc., and

(2,00 % (Ln) > (Ln—1) 2. 51,12 (1,0).
No other transitions are used in A x B. It follows that L(A x B) is a finite language with
the longest string b*!(ab™)*~1ab"~!. Hence every NFA accepting the language L(A x B)
has at least k(n+ 1)+ ¢+ 1 states. Thus A x B with the state (1,0) omitted is a minimal
NFA for L(A) N L(B). Next, since A x B is deterministic, it is a minimal partial DFA, so
every pair of states of A x B is distinguishable. Note that the states (i,j) with 1 <1i <k
and 1 < j <mn, and (k+1,7) with 1 < j < ¢, are reachable and accepting in A x B.
It follows that we have kn + ¢ reachable and pairwise distinguishable accepting states.
Thus asc(L(A) N L(B)) = kn + £ = «, and the theorem follows. O

b b AL A
|
5 (02— ()

Figure 6.1: The binary witness DFAs A (top) and B (bottom) for intersection meeting
the complexity a« = kn + ¢ with 0 < k <m and 0 </ < n.

Notice that witnesses in the previous proof were defined over a binary alphabet. The
range of accepting state complexities of languages resulting from the intersection operation

in the unary case remains open.
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b/k/_g\b
N

Figure 6.2: The reachable part of the product automaton A x B of DFAs A and B from
Figure 6.1 with kn + ¢ accepting states.

The symmetric difference () of two languages accepted by DFAs A and B can also
be obtained by a product automaton A x B, in which the set of accepting states consists
of those pairs in which exactly one component is accepting in the corresponding DFA.
Thus, for the ordinary state complexity, the upper bound is mn which was shown to be
tight by Brzozowski [9]. To the best of our knowledge, the magic number problem for
state complexity of the symmetric difference operation was not investigated so far. In our

investigation of accepting state complexity of unary languages, we use the following fact.
Fact 6.5. Let L be a unary finite language. Then asc(L) = |L|. O

The next lemma shows that every positive integer can be obtained as the accepting

state complexity of symmetric difference of non-empty unary languages.

Lemma 6.6. Let m,n,a > 1. There exist minimal unary DFAs A and B with m and n
accepting states, respectively, such that the minimal DFA for L(A)® L(B) has « accepting

states.

Proof. Since symmetric difference is commutative, we may assume that m < n. Let A

and B be the minimal DFAs with m and n accepting states, respectively, shown in Fig-

61



ure 6.3. Then

L(A)={a'"|0<i<m—2 or i>m},
LB)={a"|0<i<m—-2 or m<i<n-—1 or i>n+a},and
LA @®LB)={d|n<i<n+a-1}

The symmetric difference L(A) & L(B) is accepted by a minimal partial DFA C with «

accepting states shown in Figure 6.3. O

AH...E@E |
BH... g@ﬁ ﬁ@ﬁ ﬂ@ﬁ
Cﬂ@ﬁ... &Q&Qﬁ@ ﬁ@ﬁ ﬁ

Figure 6.3: The witness DFAs A and B and the partial DFA C for L(A) & L(B).

Now we are ready to describe the behavior of the accepting state complexity measure

with respect to the symmetric difference operation.

Theorem 6.7. We have

({n}, if m=0;
asc,u asc {m}v an = Oa
gGB?(m?n):gEB (m7n>:< .
{0} UN, ifm,n >1 and m = n;
N, if m,n > 1 and m # n.

Proof. The only language with accepting state complexity 0 is the empty language 0.
Since ) ® L = L and K @ () = K, the first two cases follow. If m,n > 1 and m = n,
then we can set K = L to get 0, or use Lemma 6.6 to get an arbitrary positive integer.
If m # n, then K # Land K@L # 0, so asc(K® L) # 0. Finally, g5°(m,n) = g5°*(m,n)

since all our witnesses are unary languages. O]

62



In the proof of Lemma 6.6, the provided witness languages were both infinite lan-
guages producing a finite language as their symmetric difference. Because for symmetric
difference we have K @& L = M if and only if K & M = L, we can rephrase the result of
Lemma 6.6 by exchanging the roles of one witness language and the resulting language.

This results in the next corollary.

Corollary 6.8. Let m,n,a > 1. There exist minimal unary DFAs A and B with m and n
accepting states, respectively, such that L(A) is finite, L(B) is infinite, and the minimal
DFA for L(A) @ L(B) has « accepting states. O

However, if both involved language are finite, we find the following result:
Theorem 6.9. Let m > n. Then =" (m,n) = {m —n,m —n+2,...,m+n}.

Proof. Let K and L be unary finite languages with asc(K) = m and asc(L) = n. By
Fact 6.5, we have |K| = m and |L| = n. Tt follows that |K @ L| = m +n — 2|K N L|.
Since asc(K @ L) = |K @ L|, we have that m+n —asc(K @ L) = 2| K N L|, which must be
even and between 0 and 2n. The value of |K N L| can be every integer between 0 and n.
It follows that all and only even numbers between 0 and 2n can be the value of 2| K N L],

and the theorem follows. O

In the previous theorem, we have found some magic numbers for accepting state
complexity with respect to symmetric difference in the unary finite case. The case if
both languages are finite sets over a general alphabet is left open. We conjecture that

g%sc,f(m7 n) = N, hence no number is magic.

6.2 Right and Left Quotients

The right quotient of a language K by a language L is defined as follows:
KL = {w | there exists a string € L such that wz € K }.

The DFA accepting KL~ ! is the same as the DFA accepting K except that the set of

accepting states is different. To be more precise, let A = (Q, %, 6, s, F') be the DFA ac-

cepting K, then B = (Q,%,0,s,{q |3z € L:5(q,x) € F}) accepts the language KL~ 1.

Thus, for an m-state DFA, the upper bound for the state complexity of the right quotient

with respect to any language is m, which is known to be tight by Yu et al. [94].
Similarly one defines the left quotient of K by L as

L™K = {w | there exists a string # € L such that 2w € K }.
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It was proven that for an m-state DFA language K, the state complexity of the left
quotient of K by any language L is at most 2™ — 1. Again, this bound is tight [94].
When considering unary languages K and L, the right and left quotient coincide,
that is, KL~' = L7'K. Thus, in the unary case, the state complexity of left quotient is
bounded by the state complexity of K. To the best of our knowledge, the magic number
problem for state complexity of the quotient operations was not investigated so far. In
this section, we consider the magic number problem for accepting state complexity with

respect to the quotient operations.

Lemma 6.10. Let m,n > 1 and o > 0. There exist minimal unary DFAs A and B
with m and n accepting states, respectively, such that the minimal DFA for L(A)L(B)™!

has a accepting states.
Proof. We consider two cases:

(1) Let 0 < o < n — 1. Define the languages K ={a' |0<i<m—2ori=m+a}
and L = {a' | m+1<i<m+n} By Fact 6.5, the language K (L, respectively) is
accepted by a minimal DFA with m (n, respectively) accepting states. Next, we have

KL ={da"|0<i<a-—1}, whose minimal DFA has a accepting states. Observe that
this case also covers a = 0 where K'L™! becomes empty.

(2) Now let o« > n. Let K be the same language as in the first case and define the unary
language L = {a' |m <i<m+mn—2ori>m+n}. By Fact 6.5, the language K (L,
respectively) is accepted by a minimal DFA with m (n, respectively) accepting states.
Next KL™' = {d' | 0<i<a—-nora—-n+2<i<a}, whose minimal DFA has «

accepting states. O
In the next theorem, we denote the right quotient by rq and the left quotient by lgq.
Theorem 6.11. We have
e e {0}, ifm=20 orn=0;
grq (mvn) - glq (m7n) = .
{0}UN, ¢ m,n>1.
All values in these ranges are attained by unary finite languages.

Proof. If m = 0 or n = 0, then at least one of the involved languages for the right quotient
operation is the empty set. Because )L~! = K(0~! = () for every languages K and L, we
obtain our first result. The remaining case follows from Lemma 6.10; notice that these
constructions can work with an arbitrary alphabet since we can duplicate the letters and
we have already obtained all possible values. Moreover, because the left quotient of unary
languages coincides with the right quotient, the theorem follows. O
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6.3 Reversal

To get an NNFA accepting the reverse of a language L accepted by a DFA A = (Q, 3,0, s, F),
it is enough to reverse all transitions and swap the role of the initial and accepting states.
This results in an NNFA A% that accepts the language L.

Before we consider the accepting state complexity with respect to the reversal opera-
tion, we take a closer look on the subset automaton D(Af). Observe that the state s is
the single accepting state of the NNFA AF. Therefore the accepting subsets of the corre-
sponding subset automaton D(A%) are those containing the initial state s of A. Moreover,
if A is a DFA without unreachable states, then the subset automaton D(A%®) does not
have equivalent states [67, Proposition 3|. Now we are ready to consider accepting state

complexity with respect to reversal in general.

Lemma 6.12. Let n,a > 1. There exists a minimal binary DFA A with n accepting
states such that the minimal DFA for L(AT) has o accepting states.

Proof. Let A= ([1,a+ nl,{a,b},d,1, F) where F = [a + 1, + n| and

, 1, ifi=lori=a+1;
d(i,a) =
1 — 1, otherwise,
a+n, ifi=1;
o(i,b) =

a, ifi=a+1.

The DFA A is shown in Figure 6.4. Two rejecting states are distinguished by a string

in a*b and two accepting states by a string in a*ba® 'b. Hence A is minimal.

a

- L@L %
b b
@D (@D
a a a

Figure 6.4: The witness DFA A for the reversal operation with n,a > 1.

We construct the NNFA AR = ([1,a + n], {a, b}, 6%, F,{1}) from the DFA A by re-

versing all the transitions, and by swapping the roles of the initial and accepting states.
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The subset automaton D(AR) has the initial state F' and the following transitions shown
in Figure 6.5:

SEFLS PSS 1,20 51,3 S S La] S [1,a S {at1)
and

{fa+1} S ja+la+2] Sa+l,a+3] S Slat+l,a+n—-1 5 F

Since every other transition from these reachable states goes to the empty set, no more
states are reachable. Since only the subsets containing 1 are accepting, there are exactly a
reachable accepting subsets. By [67, Proposition 3|, the subset automaton D(A®) does

not have equivalent states, and the theorem follows. O

b

Figure 6.5: The reachable part of DFA D(A). Notice that [a+1,a+n—1] = F\{a+n}.

Taking into account that the only language with accepting state complexity 0 is the
empty language, and for non-empty languages Lemma 6.12 applies, we get the following
range of accepting state complexities of languages resulting from reversal. Moreover, since
the reverse of a unary language is the same language, we immediately get the result for

reversal of unary regular languages, too.

Theorem 6.13. We have
{0}7 an = 0;
N, ifn>1.

gi(n) =

asc,u

All values are attained by binary languages. Next, we have g “(n) ={n} ifn>0. O
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6.4 Permutation on Finite Languages

Let ¥ = {ai,as,...,a)5} and w be a string over the alphabet 3. The Parikh vector
of w is defined as ¢ (w) = (|wlay; [Wag, - - -, |Wlayg ). The permutation of a language L is
defined as per(L) = U, e {u € E* | ¥(u) = ¢(w)}. It is known that the permutation
operation does not preserve regularity on infinite languages. For example, the language
per({ab}*) = {w € {a,b}* | |w|, = |w|y } is not regular. On the other hand, permutation
of a finite language is always finite, and every finite language is regular, so permutation
is a regularity preserving operation on finite languages.

Since every unary language is equal to its permutation, we may consider the descrip-
tional complexity with respect to permutation on binary finite languages. The ordinary

state complexity of permutation on binary finite languages was considered by Cho et al.
n?—n+2
2

in [22] where an upper bound of was shown. To the best of our knowledge, the
magic number problem for state complexity of permutation on (binary) finite languages
was not considered so far. For the accepting state complexity we prove the following three

lemmas.

Lemma 6.14. Let 1 < n < «a. There erists a minimal binary DFA A with n accepting
states such that the minimal DFA for per(L(A)) has « accepting states.

Proof. Consider the partial DFA A = ([qo, ¢a—n| U [1, 7], {a, b}, 0, o, [1,n]), where
gi,a)=1,if0<i<a—n,
0(¢i,b) = qit1, if0<i<a—n-—1,and
S(ib) =i+ 1, if1<i<n—1.
The minimal partial DFA A is shown in Figure 6.6 (left). Every string w in L(A) has
|w|, = 1and 0 < |w|, < a—1. Hence per(L(A)) is accepted by the minimal partial DFA B
shown in Figure 6.6 (right). Since B has « accepting states, the theorem follows. O

A B

b bor
- O -

Figure 6.6: The witness partlal DFA A for permutation in case 1 <n < « (left) and the
minimal partial DFA B for per(L(A)) (right).
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Lemma 6.15. Let L be a finite language accepted by a minimal DFA with at least two
accepting states. Then every DFA for per(L) has at least two accepting states.

Proof. Assume to the contrary that per(L) is accepted by a DFA with one accepting state.
It follows by [26, Lemma 1] that per(L) is prefix-free. Hence L is prefix-free, which is a

contradiction with L having accepting state complexity more than one. O]

Lemma 6.16. Let 2 < o < n—1. There exists a minimal binary DFA A with n accepting
states such that the minimal DFA for per(L(A)) has « accepting states.

Proof. Since 2 < a < n — 1, we can choose m with m > 1 such that
m+1<n—(a—1)<2™

We first describe a minimal binary DFA A with 2™+ (a— 1) accepting states such that the
minimal DFA for per(L(A)) has a accepting states, and then we modify the construction
to get n accepting states in the witness language.

The idea for the construction is as follows: for a string w in {a,b}™, let z,, refer to

the string bl*laq“lb of length m. Then define the finite language
L ={wz, € {a,b}* | |lw| = m }H{wz,wy € {a,b}* | |w| =m and 0 < |y| < a — 2}

The DFA for L is illustrated in Figure 6.7; note that only the states in level 2m and in
levels from 3m up to 3m + a — 2 are accepting. Figure 6.8 shows the DFA A in the case
of n =10, m =3, and a = 3.

We show that L has accepting state complexity 2™ + (o — 1). First, consider two
strings of the form wz, and vz, with |u| = |v| = m and u # v. Note that both ux,
and vz, are in L. Then the Myhill-Nerode equivalence classes [uz,] and [vz,] are different
because ux,uf* € L, but vr,uf ¢ L. Hence the strings of length 2m induce 2™ different
equivalence classes. Next, consider two strings wx,wy and wz,w?z in L for w € {a,b}™
and y, z € {a,b}* with 0 < |y|,|2| < a — 2. Without loss of generality, we may assume

Rz would belong to the

that |y| < |z| (in case |y| = |z| both strings wz,wfy and wr,w
same equivalence class). Then wr,wlya® > € L, but wr,w2a*">¥ ¢ L because
the string is too long. This gives additional o — 1 equivalence classes. It remains to show
that all the 2™ equivalence classes are different to the o — 1 equivalence classes. Thus,
consider two strings wz,, and wx,wfy in L, for some w € {a,b}™ and y € {a,b}* with
0 < |ly| < a—2. Then wr,wfa*? € L and wr,wlywfa®=2 ¢ L. Hence, the language L

has the desired accepting state complexity.
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Figure 6.7: A schematic drawing of a DFA A with 2™ + (o — 1) accepting states; only the

states in level 2m and in levels from 3m up to 3m + a — 2 are accepting.
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Figure 6.8: An example of the DFA A with n = 10, m = 3, and o = 3.
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Figure 6.9: A schematic drawing of the grid-like DFA B (left) for per(L) and its minimal
equivalent DFA (right) obtained from B by merging the states connected by dotted lines.

The automaton B accepting per(L) is constructed according to [22, Lemma 3.1]. It has
a grid-like structure with a truncated lower right where each state (7, j) can be identified
with the Parikh vector (i, j) satisfying 0 <i,j < 2m+ (a—2) and i+ j < 3m + (o — 2).
A schematic drawing is given in Figure 6.9 (left). The states in B corresponding to
a Parikh vector of a string in L are marked accepting. Since every string wx, with
w € {a,b}™ has the Parikh vector (m, m), the state (m, m) is accepting—see the accepting
state x in the schematic drawing in Figure 6.9 (left). The strings of the form wz,w! with
w € {a,b}™, whose Parikh vectors lie in the set { (m+1i,2m —1i) | 0 < < m}, induce the
topmost anti-diagonal of accepting states. This anti-diagonal is followed by a — 2 further
anti-diagonals of accepting states since every string wx,w?y is in L for every string y of
length at most o — 2. Again, see Figure 6.9 (left). The DFA B is not minimal because all
states in a fixed anti-diagonal are equivalent. A schematic drawing of the minimal DFA
accepting the permutation of the finite language L is shown in Figure 6.9 (right). Since
every anti-diagonal in B corresponds to an accepting state in the minimal DFA, and there

are a — 1 anti-diagonals in B, the minimal DFA for per(L) has « accepting states.

In order to decrease the accepting state complexity of L to n, it is enough to remove
all strings with prefix wz,, for some strings w in {a,b}™. Let L' refer to the result-
ing language. In order to keep the construction working as described above, we must
ensure that all accepting states in the topmost anti-diagonal can be reached. This re-

quirement is fulfilled if the Parikh vectors of all strings wx,w’ with wz,, € L' form the
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Figure 6.10: An example of the DFA B and its minimal equivalent DFA with n = 10,
m =3, and a = 3.

set {(m+1,2m — i) | 0 < ¢ < m}. To this aim, consider the following set of strings:
W ={a'b""|0<i<m}.
The set of Parikh vectors of wx,w" for each w in W is equal to
{(m+1i,2m—1)|0<i<m}.

Hence, as long as we do not remove any of the strings with prefix in W from L, the
obtained language fulfills the desired property. On the other hand, whenever all strings
with prefix w for a fixed w in {a,b}* \ W are removed, the accepting state complexity is
decreased by one because the equivalence class [wx,,] is eliminated from the language L'.
Iterating this process eliminates further equivalence classes of this form up to the point
where only the equivalence classes [wx,,] with w € W from the original 2™ equivalence
classes remain. Thus, there are m-+1 equivalence classes of this form left in L’. Therefore,
the original language L can be modified such that the accepting state complexity of L’
varies between m + 1 + (o — 1) and 2" + (a — 1).

Thus, at least m+1 strings of the form wz,, for w € {a, b}* must belong to L'. Finally,
this allows us to set the accepting state complexity of L’ to n by choosing the parameter m

appropriately, which proves the original statement. O
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Taking into account Lemmas 6.14, 6.15, and 6.16, we get the following result.

Theorem 6.17. We have

{0}7 an = 03
ghs(n) = gieel (n) = { N, ifn=1;
N\ {1}, ifn>2.

asc,u

For unary regular languages, we have gieo*(n) = {n} if n > 0.

Proof. 1f asc(L) = 0, then L is empty, so per(L) is also empty. The case of n = 1 is
covered by Lemma 6.14. By Lemma 6.15, we cannot get asc(per(L)) = 1 if asc(L) > 2.
All the remaining positive values are covered either by Lemma 6.16 if « < n — 1 or by
Lemma 6.14 if a > n. O

6.5 Cut Operation

In this section, we examine the accepting state complexity with respect to the cut opera-
tion which has been considered in Chapter 5, where the construction of the cut automaton

was described. The next lemma deals with non-empty languages.

Lemma 6.18. Let m,n > 1. Then for every a with o > 0 there exists a minimal unary
DFA A with m accepting states and a minimal unary DFA B with n accepting states such
that the minimal DFA for L(A)! L(B) has «a accepting states.

Proof. We consider three cases.
(1) Let @ = 0. Define minimal unary DFAs A and B with m and n accepting states,
respectively, using Nicaud’s notation, as follows:
A= (m+1,m,[0,m—2]U{m}),
B=(n+3n+2,[2n+1)).
In the cut automaton A! B, only states in columns 0 and 1 are reachable. All of them
are rejecting. Hence L(A)! L(B) = (.
(2) Let 1 < a < n. Define minimal unary DFAs A and B with m and n accepting
states, respectively, as follows:
A=(m+a,0,[0,m — 1)),
B=mn+2n+1,[1,n—1U{n+1}).
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Construct the DFA A! B as shown in Figure 6.11. Since 0 is accepting in A, the initial
state of A! B is (0,0). Each state (¢,0) with 1 <7 < m — 1 is reachable by the string a’
since the state i is accepting in A. Moreover, the state (i,0) is rejecting since the state 0
in B is rejecting. Each state (m—1+7, j) with 1 < j < a is reachable by the string ™17
since the state m — 1+ j is rejecting in A. Moreover, the state (m — 14 j, j) is accepting
since the state j in B is accepting. The state (m — 1+ «, «) goes to (0,0) on a. Hence
no other state is reachable in A! B. Next, the number of reachable accepting states is «,

and all of them are pairwise distinguishable.

DD D D@D

v
0,0

Figure 6.11: The witness DFAs A and B and the result of the cut operation; case a < n.
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(3) Let @ > n. Define minimal unary DFAs A and B with m and n accepting states,

respectively, as follows:

A=(m+a+1,0,[0,m—1])
and

B=mn+2n+1[1,n—1U{n+1}).

Construct the cut automaton A!B as shown in Figure 6.12. Since 0 is accepting in A,
the initial state of A!B is (0,0). Each state (¢,0) with 1 < i < m — 1 is reachable and
rejecting as in case (2). Each state (m — 14 7,7) with 1 < j < n 4 1 is reachable by
the string a™ "7 since the state m — 1 + j is rejecting in A. Moreover, all of them but
(m — 14 n,n) are accepting. The states (m + k,n + 1) with n < k < « are reachable by

m+F since the state m + k is rejecting in A and they are accepting since n + 1

the string a
is accepting in B. The state (m + a,n + 1) goes to (0,0) on a. Hence no other state is
reachable in A! B.

Next, the number of reachable accepting states is «, and all of them are pairwise
distinguishable if m > 2. If m = 1, then we modify the DFA B to have one more
rejecting state before the accepting sink state n + 2. This results in « reachable and
pairwise distinguishable accepting states in the cut automaton: we have either a group of
rejecting states followed by a group of accepting states in a cycle (if n = 1), or we have
one rejecting state followed by a group of n — 1 accepting states, two rejecting states,

and a —n + 1 accepting states in a cycle (if n > 2). O

Since we have )! L = K ! () = () for every language K and L, by the previous lemma, we
conclude with the following result stating that every non-negative integer can be attained
by the accepting state complexity of the cut of two unary languages unless at least one

of them is empty.

Theorem 6.19. We have

asc. ase {0}, ifm=0 orn=0;
g (m’n> =9 (mv TL) = )
{0} UN, otherwise.
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Figure 6.12: The witness DFAs A and B and the result of the cut operation; case a > n.
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6.6 Conclusions

Continuing the work of Dassow [25]|, we investigated the accepting state complexity of
languages resulting from unary and binary operations on regular languages. In the cases
of symmetric difference, right and left quotient, reversal, and cut operation, we were able
to provide witness for every natural numbers m, n reaching arbitrary complexity « as the
result. In the case of permutation on finite languages, every natural number is attainable
except one if the argument has complexity at least two. On the other hand, the upper
bound for intersection is mn and every number in the range is attainable. This and the
result for reversal answer the questions stated in [25|. Results by Dassow are summarized
in Table 6.1 (left) which is the same as Table 3.3 from chapter Known results. The results
obtained in this chapter are summarized in Table 6.1 (right).

The table also displays the size of alphabet used to describe witnesses. Notice that
for reversal and permutation, the unary case is not interesting since the result of the
operation is the same language. We did not consider unary case for intersection.

In the case of symmetric difference on unary finite languages, the range of possible
accepting state complexities is not contiguous, so magic numbers exist, and this is the

only case that we have found some magic numbers in this chapter.

Operation Range M. | |3 Operation Range M. | |X]
Lt NU{0|n=1}|no| 1 KNL [0, mn] no | 2
KUL N no | 1 KoL {0} UN no | 1
KL N no| 1 KL {0}UN no | 1
K\L {0}UN no | 1 LK {0}UN no | 1
L N no | 1 LE N no | 2
KnL [0, mn] ? per(L) N\{1|n>2}|no| 2

KL {0}UN no | 1

Table 6.1: Results from [25] (left) and results of this chapter (right). Let asc(K) = m
and asc(L) = n for m,n > 1. Then the range indicates the attainable accepting state
complexities of the operation under consideration and the status of the magic number

problem (M.) refers to whether there exist magic numbers in the given range or not.

76



Chapter 7

Nondeterministic State Complexity

in Subclasses of Convex Languages

In this chapter we examine the descriptional complexity of operations on subclasses of
convex regular languages. The complexity of an operation on a subclass can be smaller
than on the class of regular languages. This was the motivation for Brzozowski et al.
[14, 10, 11] who considered the complexity of operations on free, ideal, and closed lan-
guages represented by DFAs and for Mlynéarcik et al. [46, 47, 62, 77, 78] who studied the
nondeterministic state complexity of operations on the same classes of languages.

Here we continue this research. First, we solve two open problems from [78| concerning
the nondeterministic state complexity of intersection on binary subword-free languages
and reversal on binary left ideal languages. Next, we examine the nondeterministic state
complexity of power and positive closure on the classes of prefix-, suffix-, factor-, and
subword-free, closed, and convex, and right, left, two-sided, and all-sided ideal languages.
For both operations we get the exact complexity in all considered classes, and all our
witnesses are defined over an optimal binary or unary alphabet. This chapter is based on

the following two papers:

Hospodéar, M., Jiraskova, G., Mlynarcik, P.: Nondeterministic complexity in subclasses
of convex languages. Theoretical Computer Science (to appear).
DOI: 10.1016/j.t¢s.2018.12.027

Hospodéar, M., Palmovsky, M.: Nondeterministic complexity of power and positive
closure on subclasses of convex languages. In: Freund, R. et al. (eds.): Tenth Workshop
on Non-Classical Models of Automata and Applications, NCMA 2018, Kosice, Slovakia,
August 21-22, 2018. Short Papers. pp. 35-44 (2018).
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7.1 Intersection on Binary Subword-Free Languages

The nondeterministic state complexity of intersection on subword-free languages
is (m —2)(n — 2) 4+ 2 and it is met by languages defined over an alphabet of size m+n—5
[49, Theorem 19(2)]. In this section, we show that there exist two binary languages, both
accepted by n-state NFAs, such that the nondeterministic state complexity of their inter-
section is at least n?/6. This gives a positive answer to [78, Conjecture 4.9].

First, we provide a sufficient condition for a partial DFA to accept a subword-free

language.

Lemma 7.1. Let A= ({0,1,...,n —1},%,-,0,{n — 1}) be an n-state partial DFA such
that for all states i and j and each input symbol o in 3, we have

(1) i-0 > i wheneveri-o is defined;

(2) ifi < j, theni-o < j-o wheneveri-o and j-o are defined.
Then L(A) is subword-free.

Proof. By induction on |w|, the properties (1) and (2) can be proved for an arbitrary
non-empty string w. Since A is a partial DFA, every string w in L(A) has exactly one

computation in A. Consider a string
W = VpU1V1U2 * * * Vp—1ULV

and its proper subword v = vguy - - - v with |vgl, |vk| > 0 and |w], |v;| > 0if 1 <i < k—1.
Assume that both w and v are in L. This means that both w and v have accepting

computations in A:

Vo (75} U1 u2 v2 Uk Vg
O0—=pr—q —=>p2—q@ — " —q —> Dpt1 =n— 1,

0 v1 /U2 Vg /
0—=pr—p— - =D =n—1

Since w; is non-empty, p; < q1, S0 ph = p1-v; < q1-v; = po, and by induction, we

have p ., < pr+1 = n — 1, a contradiction. Hence L(A) is subword-free. H

Now we are able to get the main result of this section which shows that the upper
bound mn for intersection is asymptotically tight for infinitely many pairs of numbers
m and n in the class of binary subword-free languages. The binary alphabet cannot
be decreased here since the nondeterministic state complexity of intersection on unary
subword-free languages is min{m, n}; recall that a unary language is subword-free if and

only if it consists of at most one string.
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Theorem 7.2. Let n > 4. There exist binary subword-free languages K and L accepted
by n-state NFAs such that every NFA for K N L has at least n?/6 states.

Proof. Let k = |(n — 1)/3]|. Let K be the binary language accepted by the partial
DFA A= ({0,1,...,n—1},{a,b},-,0,{n — 1}), with transitions defined as follows:

. ) . ) ‘ 1+2, if0<i<2k—2andiiseven;
1ra=1+1, if0<i<n-—2; 1-b=
i+1, ifn—k—-1<i<n-—2;

where all the remaining transitions are undefined; Figure 7.1 (left) shows the partial
DFA A in the case of n = 13. By Lemma 7.1, the language K is subword-free. Let L be
the language accepted by the partial DFA B obtained from A® by renaming each state i
ton—1—1i (0 <i<n-—1);see Figure 7.1 (top). We have L = K%, so L is subword-free
as well.

Consider the product automaton A x B for K N L. Let us show that for each state
in the main diagonal, as well as for some states in the k diagonals below the main one,
the corresponding singleton set is reachable as well as co-reachable in A x B; notice that
each diagonal (but the main one) has three elements less than the diagonal just above it.
To this aim, notice that for j =0,1,...,kand 2=10,1,...,n — 1 — 3j, we have

(0,00} 2 {(25,5)} 5 {25 + 1,5 +14)}

in A x B, while in (4 x B)%, we have

n—1-3j—1

(n—1n—1Y S {n—1—jn—1-2)) 2 (2 +i,j+i))

So the total number of singleton sets that are reachable and co-reachable is

k

_ n+n—-3k _n 2n—(n—1) n n+1_ n?
3= (k1) LTS AT >
D=l >y 2 3772 6
7=0
This proves the theorem. ]

7.2 Reversal on Binary Left Ideal Languages

The nondeterministic state complexity of reversal on left ideal languages is n + 1 with
a ternary witness [78, Theorem 6.9(b)|. Here we show that the upper bound can be met
by a binary left ideal language. The binary alphabet is optimal here since the reversal of

every unary language is the same language.
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Figure 7.1: The partial DFAs A (left) and B (top) and some transitions in the partial
DFA A x B for K N L in the case of n = 13, so k = 4.

Theorem 7.3. Let n > 5. There exists a binary left ideal language L accepted by an
n-state NFA such that every NFA for LT has at least n + 1 states.

Proof. Let L be the left ideal accepted by the n-state NFA shown in Figure 7.2. Let
A={(@"?a"*b)}U{(a",a" ") |1 <i<n—4}U{(a""be)},
B = {(bb, ba), (b, a)},

u = ba, and
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Figure 7.2: The binary left ideal witness NFA A for reversal meeting the bound n + 1.

The sets A and B are disjoint. Next, we have {a*"~7b,a" b, b%a,ba} C L%, so all pairs
in AU B, as well as the pairs (¢,u) and (g, v) concatenate in a string in L. On the other
hand, for each two distinct pairs in A U B, a mismatched concatenation results either in
a string a*b with k # (n —4) mod (n — 3), or in a string in a*, or in a string in b*, or in a
string beginning with bba. No such string is in L®. Hence AU B is a fooling set for L.
Next, a® 3 - ba is not in L%, and ¢ concatenated with the second component of each pair
in A but a" b results in a string which is not in L. Hence AU {(g,u)} is a fooling set
for L®. Finally, bb - a" *b and ¢ - a are not in L, so BU {(¢,v)} is a fooling set for L.
By Lemma 2.9, every NFA for L? has at least n + 1 states. O

7.3 Power on Convex Languages

In this section, we examine the nondeterministic state complexity of the k-th power and
positive closure on subclasses of convex languages. In particular, we consider the classes of
prefix-, suffix-, factor-, and subword-free, -closed, and -convex languages, and the classes
of right, left, two-sided, and all-sided ideal languages. For both of these operations, we
get a tight upper bound in each of the considered classes. All our witnesses are defined
over optimal binary or unary alphabets.

Let us recall that if a language is prefix-free, then every minimal NFA for it is non-
exiting [38] and if a language is suffix-free, then every minimal NFA for it is non-returning
|36]. Next, if a language is a right (left) ideal, then it is accepted by a minimal NFA such
that its unique final (initial) state has a loop on each symbol and no other out-transitions
(in-transitions) [49, Proposition 12]. We use these automata characterizations to get upper
bounds in the considered classes. To get lower bounds, we use the fooling set method
given by Lemma 2.8 or, in the case of binary subword-closed languages, its simplification

given by Lemma 2.15 (Greater-Smaller Lemma).
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The nondeterministic state complexity of the k-th power on regular languages is kn
[27, Theorem 3|. We first show that in the classes of free and ideal languages, the upper

bound is smaller than kn.

Lemma 7.4 (Power on Free and Ideal Languages: Upper Bounds). Let k,n > 1.
Let L be a prefiz-free or suffiz-free, or right or left ideal language accepted by an NFA
with n states. Then L* is accepted by an NFA with at most k(n — 1) + 1 states.

Proof. We may assume that a minimal NFA for a prefix-free language L is non-exiting
and has a unique final state. To get an NFA for L*, we take k copies of a minimal NFA
for L and we merge the final state in the j-th copy with the initial state in the (j + 1)-th
copy. The initial state of the resulting NFA is the initial state in the first copy, and its
unique final state is the final state in the k-th copy.

Now consider right ideal languages. We may assume that a minimal NFA for a right
ideal language L has a loop on each symbol in its unique final state which has no other
out-transitions. The construction of an NFA for L¥ is the same as for prefix-free languages.

If L is suffix-free, then we may assume that a minimal NFA for L is non-returning.
To get an NFA for L*, we take k copies of a minimal NFA for L. For each symbol a and
every final state p in the j-th copy with 1 < j < k — 1, we make the state p non-final and
add the transitions (p, a,q) whenever there is a transition on a to ¢ from the initial state
in the (j + 1)-th copy. Next, we omit the unreachable initial state of the (j 4+ 1)-th copy.

If L is left ideal, we may assume that a minimal NFA for L has a loop on each symbol
in its initial state which has no other in-transitions. The construction of an NFA for L*
is the same as for suffix-free languages except that we add a loop on each symbol on p.

In all four cases, we get an NFA for L* with k(n — 1) + 1 states. O

Lemma 7.5 (Power: Lower Bounds). Let k > 1 and n > 2.

(a) There exists a unary subword-free language L accepted by an n-state NFA such that
every NFA for L¥ has at least k(n — 1) + 1 states.

(b) There exists a unary all-sided ideal language L accepted by an n-state NFA such that
every NFA for L¥ has at least k(n — 1) + 1 states.

(¢) There ezists a binary subword-closed language L accepted by an n-state NFA such that
every NFA for L* has at least kn states.

Proof. (a) Let L = {a"~'}, which is accepted by an n-state NFA. We have LF = {a*"~1D}
and the set {(a’,a*™ Y=%) | 0 < i < k(n — 1)} is a fooling set for L*. By Lemma 2.8,
every NFA for L* has at least k(n — 1) + 1 states.
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Figure 7.3: Binary subword-closed witness for the k-th power.

(b) Consider the language L = {a’ | i > n — 1} which is accepted by an n-state NFA.
We have LF = {a’ | i > k(n — 1)} and the same set as above is a fooling set for L*.

(¢) Let L be the language accepted by the partial DFA A shown in Figure 7.3. We
have
L=A{we{a,b}" | w=uv with |ul, <n—2and v € a*}.

It follows that every subword of every string w in L is in L as well. Hence L is subword-
closed.

First, construct an NNFA N for L* in a standard way: take k& copies of the NFA A,
add the transition on a from every state in the i-th copy to the initial state of the (i+1)-th
copy, and add the transition on b from every state, but the last one, in the i-th copy to
the initial state of the (i + 1)-th copy (1 < i < k — 1). The set of initial states of N
consists of the initial states in all copies of A. The set of final states of N consists of
the states in the k-th copy of A. Apply the subset construction to N to get the subset
automaton D(N). The reachable states of D(IN) have the same structure as shown in
Figure 7.4. By applying the subset construction to N, and taking into account only
the reachable non-empty subsets, we get, after renaming the states, the partial DFA D
with kn states shown in Figure 7.4.

Let us prove that D is a minimal NFA for L*. For i = 1,2,...,kn, let X; = {i}
and Y; = {1,2,...,i}. Each X, is reachable since D is deterministic and does not have
unreachable states. Next, let us show that each Y; is co-reachable in D. Notice that the
set of initial states of D is {1,2,... kn} and each Y;_; is reachable in D from Y; either
by b or by a. Moreover, i € X;NY;, X; C{i,i+1,...,kn}, and Y; C {1,2,...,i}, so the
sets X; and Y; satisfy the conditions of Lemma 2.15 (Greater-Smaller Lemma). Hence we
have nsc(L*) < kn. O

In the lemma above, we must have n > 2 since for every positive integer k, the k-th
power of a language accepted by a 1-state NFA is the same language. The next theorem
shows that two symbols are necessary to meet the bound kn for the k-th power on classes
of closed languages. Notice that in the unary case, the classes of prefix-, suffix-, factor-,

and subword-convex languages coincide.
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Figure 7.4: A partial DFA D for L(A)* where A is shown in Figure 7.3.

Lemma 7.6 (Power on Unary Convex Languages). Let k > 1 and n > 1. Let L
be a unary conver language accepted by an n-state NFA. Then LF is accepted by an NFA
with k(n — 1) + 1 states. There ezists a unary closed, so convez, language L accepted by
an n-state NFA such that every NFA for L* has at least k(n — 1) + 1 states.

Proof. If L is infinite, then L = {a® | i > ¢} with £ < n — 1. Hence LF = {a’ | i > k{}
and nsc(LF) = kf +1 < k(n — 1) + 1. If L is finite, then the length of the longest string
in L is at most n — 1, so the length of the longest string in L* is at most k(n — 1). In
both cases, the language L* is accepted by an NFA with k(n — 1) + 1 states. For the
lower bound, consider the unary subword-closed language L = {a' | 0 < ¢ < n — 1}.
Then L*F = {a"| 0 <i < k(n — 1)} and nsc(LF) = k(n — 1) + 1. O

The next theorem summarizes the results obtained in the three lemmas above.

Theorem 7.7 (Power on Convex NFA Languages). Let k and n be positive integers

with n > 2. The nondeterministic state complexity of the k-th power is:

(a) kn on prefiz-, suffiz-, factor-, and subword-closed and -convex languages with a binary

subword-closed witness, and a binary alphabet is optimal here;

(b) k(n — 1) + 1 on prefiz-, suffiz-, factor-, and subword-free languages with a unary
free witness, on right, left, two-sided, and all-sided i1deals with a unary all-sided ideal

witness, and on unary closed and conver languages with a closed witness. O
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7.4 Positive Closure on Convex Languages

Now we consider the operation of positive closure. The upper bound on nondeterministic
state complexity of positive closure on regular languages is n [40, Theorem 9| since we can
get an NFA for Lt from an NFA for L by adding the transition (g, a, s) whenever there
is a transition (q,a, f) for a final state f. Our first observation shows that the positive

closure of every factor-closed language is of complexity one.

Lemma 7.8 (Positive Closure on Factor-Closed Languages). Let L be a factor-

closed language. Then nsc(LT) = 1.

Proof. Let ' be the set of symbols present in at least one string of L. Then L C I'*, and
since L is factor-closed, I' U {e} C L. Tt follows that Lt =T'*, so nsc(L") =1 O

Since every subword-closed language is also factor-closed, the nondeterministic state
complexity of positive closure of every subword-closed language is one. For other sub-

classes, the regular upper bound n holds, and the next theorem proves its tightness.

Lemma 7.9 (Positive Closure: Lower Bounds). Let n > 1. There exists
(a) a unary subword-free (so, subword-convezx) language L
(b) a unary all-sided ideal language L
(¢) a binary prefiz-closed language L
(d) a binary suffiz-closed language L
accepted by an n-state NFA such that every NFA for L™ has at least n states.

Proof. (a) Consider the language L = {a™ '}, which is accepted by an n-state NFA. We
have LT = {a*™Y | k > 1} and the set {(a’,a"'7") | 0 < i < n — 1} is a fooling set
for Lt of size n. By Lemma 2.8, every NFA for L™ has at least n states.

b) Let L = {a’ | i > n — 1}, which is accepted by an n-state NFA. We have LT = L
(b) : pted by

and the same set as above is a fooling set for L™ of size n.

(c) Let L be the language accepted by the NFA shown in Figure 7.5. Notice that each
state of this NFA is final, hence L is prefix-closed.

b
Figure 7.5: A binary prefix-closed witness for positive closure meeting the bound n.
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Figure 7.6: A binary suffix-closed witness for positive closure meeting the bound n.

Consider the set of pairs of strings
F={(a,a" ') |0<i<n-—1}

of size n. We have a'a™ '™ = a"'b. Since the string «"'b is in L, it is in L.
Let 0 < i < j <n—1. Then a’a® ' 7bis not in L*. Hence the set F is a fooling set
for LT of size n.

(d) Let L be the language accepted by the NFA shown in Figure 7.6. Notice that only
strings beginning with a are accepted from non-initial states, and for every aw accepted
from a non-initial state we have w € L, hence L is suffix-closed. Since the initial state is

a unique final state, we have L = L™. Consider the set of pairs of strings
F={(ba',a" )| 0<i<n—1}

of size n. We have ba‘a"'=% = ba™ !, which is in L*. Let 0 < i < j < n — 1.

Then ba’a™ 177 is not in L. Hence the set F is a fooling set for LT of size n. O

Notice that two symbols are necessary to meet the bound n for positive closure on
classes of prefix-closed and suffix-closed languages since every unary prefix-closed or suffix-
closed language is subword-closed, and hence its positive closure is of complexity one by

Lemma 7.8. The results of the two lemmas above are summarized in the next theorem.

Theorem 7.10 (Positive Closure on Convex NFA Languages). Let n be a positive

integer. The nondeterministic state complexity of positive closure is:

(a) n on prefiz-, suffiz-, factor, and subword-free and -convex languages and on right,
left, two-sided, and all-sided ideal languages with unary witnesses, and on prefiz- and

suffiz-closed languages with binary witnesses,

(b) 1 on factor-closed, subword-closed, and unary closed languages. ]
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7.5 Conclusions

We proved that the upper bound mn on the nondeterministic state complexity of inter-
section on subword-free languages is asymptotically tight in the binary case if m = n.
This solves the open problem stated in |78, Conjecture 4.9].

Then we provided a binary left ideal witness for reversal which improved a result from
|78, Theorem 6.9(b)] where a ternary witness was given.

Table 7.1 shows our results on nondeterministic state complexity of power and positive
closure on subclasses of convex languages. It also displays the sizes of alphabets used to
describe witnesses. Whenever we used a binary or unary alphabet, it was always optimal.
Notice that in the case of unary regular languages, the exact complexity of the k-th power

is not known.

Class \ Operation Lk || LT |
prefix-, suffix-, factor-, subword-free k(n—1)+1 1 n 1
right, left, two-sided, all-sided ideal k(n—1)+1 1 n 1
prefix-closed, suffix-closed kn 2 n 2
factor-closed, subword-closed kn 2 1 1
unary closed k(n—1)+1 1

prefix-, suffix-, factor-, subword-convex | kn 2 n 1
unary convex kin—1)+1 n

regular kn 2 [27] | n 1 [40]
unary regular kln—1)4+1<-<kn [27]| n |40]

Table 7.1: Nondeterministic state complexity of the k-th power and positive closure.
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Chapter 8

Descriptional Complexity

of the Forever Operation

Formal languages are described by various kinds of formal systems. We can compare
them by their computational power, or from the descriptional complexity point of view.
For example, the description of languages by NFAs is exponentially succinct compared to
DFAs. This trade-off results from the subset construction presented by Rabin and Scott
in 1959 [83]. Similarly, the trade-off from Boolean finite automata (BFAs) to DFAs is 22",
as shown by Leiss in 1981 [72], and the trade-off from alternating finite automata (AFAs)
to NFAs is 2" + 1, as shown by Jiraskova in 2012 [59].

The descriptional complexity of combined operations was investigated by Salomaa,
Salomaa, and Yu in 2007 [85, 86] and by more than dozen other papers including Eom
and Palmovsky in 2016 [31] and Jirdsek and Jiraskova in 2018 [55]. Sometimes, the
state complexity of the combined operation is the same as the composition of the state
complexities of individual operations. This is the case of star of intersection. On the other
hand, star-complement-star [55] has a double exponential upper bound from composition,
but a smaller exact complexity in 29(e™)

In this chapter, we investigate the descriptional complexity of the combined opera-
tion (X*L%)E where L is a language over an alphabet ¥ and L® stands for the complement
of the language L. Jean-Eric Pin asked the following question: Let L be a regular language
over % recognized by an NFA or a DFA with n states. How many states are sufficient
and necessary in the worst case for an NFA (DFA) to recognize the language (3*L0)C?
Jean-Camille Birget in 1996 [6] provided the exact trade-off 2"~ from DFAs to NFAs,
and lower and upper bounds 27! and 27! + 1, respectively, for the nondeterministic
state complexity of ($*LE)C.

89



The motivation of Pin’s question came from the word model of Propositional Temporal
Logic [24]. The set of all models of a formula ¢ over ¥ is a regular language L(y) over X.
Some of the temporal operators used in this logic are o (“next”) and ¢ (“eventually”, or
“at some moment in the future”); there is also the negation operator —. A natural dual to
the “eventually” operator is the “forever” (or, “always in the future”) operator O, defined
to be — o — (“not eventually not”). Formulas and their models are related as follows:

L(®) = L(p)",

L(op) = SL(),

L(op) = X" L(yp).

Thus L(Op) = L(6@) = (*L8)C. Hence in [6], Birget studied the “forever” operator.

We continue this research by investigating the complexity of the forever operator for
different models of finite automata. We consider complete (DFAs) and partial determinis-
tic finite automata (pDFAs), nondeterministic automata with a single (NFAs) or multiple
initial states (NNFAs), and Boolean automata with a single initial state, called alternat-
ing finite automata (AFAs) in [6, 32|, or with an initial function (BFAs) [12]. Similarly
as Pin, we ask the following question: If a language L is represented by an n-state au-
tomaton of some model, how many states are sufficient and necessary in the worst case
for an automaton of some other model to accept (E*LE)E? The answer is present in the

published paper which can be found in Appendix [B] at the end of this thesis:

Hospodar, M., Jirdskova, G., Mlynarcik, P.: Descriptional complexity of the forever
operator. International Journal of Foundations of Computer Science 30(1), pp. 115
134 (2019). DOT: 10.1142/50129054119400069.

We study all the possible 36 trade-offs, and except for four cases, we always get tight
upper bounds. In particular, we prove that the upper bound on the nondeterministic
state complexity of (X*LE)E is 271, which improves Birget’s upper bound 2"*! + 1 and
meets his lower bound for DFA-to-NFA trade-off. The most interesting result of [B] is the
tight upper bound on the NFA-to-DFA trade-off given by the Dedekind number M(n —1).

In |B, Lemma 6], some properties of the forever operator are provided. These prop-
erties, also with the properties of finite automata from [B, Lemma 5|, are used to prove
upper and lower bounds on some of the 36 possible trade-offs. However, we do not need
to prove each trade-off separately since bounds on some trade-offs follow from bounds on
some other trade-offs. This is shown for upper bounds in Table 8.1 using an arrow from
one cell to another. A circle denotes the proven upper bound. Similarly, Table 8.2 shows
the corresponding arrows for lower bounds; here, a dashed circle denotes the same lower

bound proven using a smaller alphabet.
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DFA pDFA NFA NNFA AFA BFA

DFA @/\ gn—1 - gn—1 - on—1 n n
pDFA 2n1+1r\@f\ g1 ™ et ; .

n+1

Table 8.1: Upper bounds on the complexity of (Z*LC)E.

DFA pDF. NFA NNFA AFA BFA

~

Table 8.2: Lower bounds on the complexity of (£*LE)C.
91



IN(Z* LY | DFA 3| | pDFA 3| | NFA  |2| | NNFA [¥| | AFA |2 | BFA
DFA | 271 2 | 2nt 2 |2vt 3 2! 3 n 3 |n 3
pDFA | 2771 41 4 |2t 2 |2t 3 2t 3 n 2 |n 2
NFA | M(n—1) 2% | M(n—1)—1 271 |2»=1 3 |2»1 3 |p 2 [p 2
NNFA | > M(n—1) 21 | > M(n—1)—12"+1 | >271 3 | >271 3 |n412 |n 2
< M(n) < M(n)—1 <2n—1 < 2m—-2

AFA | 2277 2 |22 —1 2 |27+ 12 |2 1 in 1 |n 1
BFA | 22"~1 2 | 2211 2 | 2" 2 [27-1 1 |n+11 |n 1

Table 8.3: The complexity of (£*LE)E for various types of finite automata. The DFA-NFA

and DFA-NNFA trade-offs are from [6].

I\(Z*LP® | DFA pDFA | NFA | NNFA | AFA BFA
DFA | n n—1|n—1 |n—1 | [logn]+1 [logn]
pDFA | n+1 n n n [logn] +1 [log(n+1)]
NFA | D(n) D(n) | D(n) | D(n) | [log(D(n))]+1 | [log(D(n))]
NNFA | D(n) D(n) | D(n) | D(n) | [log(D(n))]+1 | [log(D(n))]
AFA |2t 41| 2n7t f2nmt ponml g n
BFA | 27 " —1 2" =12 =1 |n+1 n

Table 8.4: The upper bounds on the complexity of the forever operator in the unary case.
We have D(n) = F(n — 1) + n? — 2 € 200Vnloen) and [log(D(n))] < n.

Results from Table 8.1 and 8.2 are summarized in Table 8.3 which also shows the

size of alphabet used to describe witness languages for the trade-offs. Table 8.4 displays

the upper bound in the unary case and shows that whenever we use binary alphabet,

it is optimal in the sense that the upper bound cannot be met by any unary language.

Whenever we use an alphabet of size more than two, we do not know whether it is optimal.
We conjecture that the upper bounds in the cases NFA-to-{DFA, pDFA} can be met by a
constant alphabet. We would also like to achieve tightness in the cases NNFA-to-{DFA,
pDFA, NFA, NNFA} where upper and lower bounds are not the same. Our computations
show that the upper bound M(n) for the NNFA-to-DFA trade-off is not tight.
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Chapter 9
Conclusions and Future Work

In this thesis, we investigated the descriptional complexity in the class of regular languages
and in some of its subclasses. In particular, we considered the state complexity of regular
operations on languages represented by deterministic, nondeterministic, alternating, and
Boolean finite automata. We also considered another complexity measure called accepting
state complexity.

In Chapter 4, we described ternary DFAs with an arbitrary number of final states
meeting the upper bound on the state complexity of concatenation. We also provided
binary witnesses assuming that the first automaton has at least two non-final states.
We used these binary witnesses to describe binary alternating finite automata with m
and n states meeting the upper bound 2™ 4+ n + 1 on the alternating state complexity
of concatenation. This gave a solution to an open problem stated in 1990 by Fellah,
Jiirgensen, and Yu [32].

We provided a complete solution of the magic number problem for the cut operation
in Chapter 5 by describing binary witnesses for each number from one up to the known
upper bound, and by determining the magic status of each value in the corresponding
range in the unary case.

Chapter 6 was devoted to the accepting state complexity. We proved that the range of
possible accepting state complexities for intersection is the set {0,1,...,mn} with binary
witnesses, which solved an open problem stated by Dassow [25]. We also showed that the
corresponding range for symmetric difference and left and right quotients is given by the
set of all non-negative integers with unary witnesses, for reversal it is given by the set of
all positive integers with binary witnesses, and for permutation on finite languages the

range is given by the set of all integers greater than one with binary witnesses.
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In Chapter 7 we investigated the nondeterministic state complexity of the operations
of intersection, reversal, k-th power, and positive closure in the classes of prefix-, suffix-,
factor-, ad subword-free, -closed, and -convex languages, and right, left, two-sided, and
all-sided ideal languages. We first described binary subword-free languages accepted by
n-state NFAs such that their intersection requires an NFA with at least n?/6 states. This
provided a positive answer to a conjecture stated by Mlynarc¢ik [78] and showed that the
upper bound mn is asymptotically tight in the binary case whenever m = n. Then we
provided a binary left ideal witness for reversal, which improved a ternary solution given
by Mlynarc¢ik et al. [46]. Finally, we obtained the nondeterministic state complexity
of the k-th power and positive closure in all considered subclasses. Our witnesses were
defined over a binary or unary alphabet. Whenever we used a binary alphabet, it was
always optimal in the sense that the corresponding upper bounds cannot be met by unary
languages.

We examined the descriptional complexity of the forever operator L +— (Z*LB)[3 in
Chapter 8. We represented a language L by an automaton of one of the following six
models: complete and partial deterministic finite automata, nondeterministic finite au-
tomata with a unique or multiple initial states, alternating, and Boolean automata. We
required the result of the forever operator to be represented again by one of these six
models. This gave us 36 possible cases. For 32 of them, we obtained the exact trade-offs.
Except for four cases, our witness languages were defined over a small fixed alphabet
which was often optimal. By showing that the nondeterministic state complexity of this
operator is 2”1 we improved a result by Birget [6]. The most interesting result of this
chapter is the NFA-to-DFA trade-off which is given by the Dedekind number M(n — 1).

Some problems remained open in this thesis and we conclude this chapter with their
list.

Open Problem 1 (Concatenation on Binary DFAs with One Non-Final State
in the First DFA, cf. [A, Theorem 5.1]). Let A be a DFA with m states and m — 1
final states and B be a DFA with n states and at least two final states Let L(A) and L(B)
be binary. What is the state complexity of concatenation L(A)L(B) in the worst case?

We have an upper bound (m + 1)2"~! and a lower bound smaller by one.

Open Problem 2 (Concatenation on Binary AFAs with One State in the Second
AFA). Let A and B be AFAs with m and 1 states, respectively. Let L(A) and L(B) be
binary. What is the alternating state complexity of concatenation L(A)L(B) in the worst
case? We have an upper bound 2™ + 2. This problem is open since the DFA B in [A,

Theorem 4.7 requires 4 states.
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Open Problem 3 (Concatenation on Unary AFAs, cf. [A, Theorem 6.7]). Let A
and B be AFAs with m and n states, respectively. Let L(A) and L(B) be unary. What
is the alternating state complexity of L(A)L(B) in the worst case? We have an upper

bound m +n + 1 and a lower bound m +n — 1.

Open Problem 4 (Descriptional Complexity of the Forever Operator, cf. [B]).
Let L be a language accepted by an n-state NNFA. What number of states is necessary
in the worst case to accept (X*(L°))C by a DFA, a pDFA, an NFA, or an NNFA? We have

upper and lower bounds on all four trade-offs.

Open Problem 5 (State Complexity of Cut with More Final states, cf. [A] ).
Let A be a DFA with m states and k final states and B be a DFA with n states and /¢
final states. What is the state complexity of cut L(A)!L(B) in the worst case? We
have an upper bound and reachability, but more final states in B make distinguishability

complicated.

Open Problem 6 (Magic Number Problem for Cut with More Final States,
cf. [A] ). Let A be a minimal DFA with m states and k final states and B be a minimal
DFA with n states and /¢ final states. What is the set of all numbers attainable as the
state complexity of cut L(A)! L(B)?

Open Problem 7 (Ranges of State Complexities for Operations ). Let K and L
be languages accepted by minimal DFAs with m and n states, respectively. What is the
set of all numbers attainable by the state complexity of the symmetric difference K @ L,
right quotient K L™, left quotient L™'K, or permutation of L? These operations were

considered for ranges of accepting state complexities in Chapter 6.

Open Problem 8 (Ranges of Complexities for Unary Operations on Unary
Languages, cf. [17, 20]). Let A be a unary automaton with n states. What is the set
of all numbers attainable as the complexity of L(A)°? If o is square and A is an NFA, we
have an upper bound 2n and conjecture that no number is magic. We even do not know
whether the upper bound is 2n or 2n — 1. If o is the Kleene closure and A is a DFA, we
have an upper bound (n—1)?+1 and we have a set of known magic numbers of size O(n).
However, we do not know the smallest magic number and there are still O(n?) numbers

with unknown magic status.
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THE COMPLEXITY OF CONCATENATION ON DETERMINISTIC
AND ALTERNATING FINITE AUTOMATA™

MicHAL HOSPODAR® AND GALINA JIRASKOVA

Abstract. We study the state complexity of the concatenation operation on regular languages repre-
sented by deterministic and alternating finite automata. For deterministic automata, we show that the
upper bound m2™ — k2"~! on the state complexity of concatenation can be met by ternary languages,
the first of which is accepted by an m-state DFA with & final states, and the second one by an n-state
DFA with ¢ final states for arbitrary integers m,n,k, ¢ with 1 <k <m—1and 1 <¢<n— 1. In the
case of kK < m — 2, we are able to provide appropriate binary witnesses. In the case of k = m — 1 and
¢ > 2, we provide a lower bound which is smaller than the upper bound just by one. We use our binary
witnesses for concatenation on deterministic automata to describe binary languages meeting the upper
bound 2™ + n + 1 for the concatenation on alternating finite automata. This solves an open problem
stated by Fellah et al. [Int. J. Comput. Math. 35 (1990) 117-132].
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1. INTRODUCTION

Concatenation is a binary operation on formal languages defined as KL = {uv | u € K and v € L}. Tt is
known that if a language K is accepted by an m-state deterministic finite automaton (DFA) and L is accepted
by an n-state DFA, then the concatenation K L is accepted by a DFA of at most m2™ — 2"~ states [10].

Ternary languages meeting this upper bound were described by Yu et al. [14]. Maslov [10] proposed binary
witnesses for concatenation, but he did not provide any proof. The tightness of this upper bound in the binary
case was proven in [6].

However, if the minimal DFA recognizing the first language has more than one final state, then the upper
bound m2" — 2"~ on the state complexity of concatenation cannot be met; here, the state complexity of a
regular language is the number of states in the minimal DFA for the language, and the state complexity of
a regular operation is the number of states that are sufficient and necessary in the worst case for a DFA to
recognize the language resulting from the operation considered as a function of the state complexities of the
operands. Yu et al. [14] showed that the state complexity of concatenation is at most m2™ — k2"~1, where k is
the number of final states in the minimal DFA for the first language. The binary languages meeting this upper
bound were described for each k with 1 < k < m — 1 in Theorem 1 of [5], but there are some errors in the proof
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of this theorem, and one of our aims is to fix them. We also show that the witnesses from [10, 14] meet the
upper bound m2" — k2"~! if we make the k last states final in the DFA for the first language.

Then we study the complexity of concatenation also in the case where the second automaton has more
than one final state. Our motivation comes from the paper by Fellah et al. [3], where the authors consider
the concatenation operation on languages represented by alternating finite automata (AFA), and get an upper
bound 2™ +n + 1. They also write: “We conjecture that this number of states is actually necessary in the worst
case, but have no proof.”

It is known ([3], Thm 4.1, Cor. 4.2) and ([7], Lem. 1, Lem. 2) that a language L is accepted by an n-state
AFA if and only if its reversal L% is accepted by a 2"-state DFA with 277! states final. Hence to get a lower
bound for concatenation on AFAs, we need two languages represented by DFAs with half of states final that
are hard for concatenation on DFAs.

We first inspect the witnesses from [5, 10, 14] and show that none of them meets the upper bound m2" — k27!
if the second automaton has more then one final state. Then we describe ternary languages meeting this bound
for all m,n, k, £, where m and k is the number of states and the number of final states in the minimal DFA for
the first language, and n and ¢ is the number of states and the number of final states in the minimal DFA for
the second language. Then, in the case of k < m — 2, that is, if the first automaton has at least two non-final
states, we describe appropriate binary languages. Finally, we consider the case of k =m — 1 and ¢ > 2 over a
binary alphabet. In such a case, the upper bound is (m + 1)2"~!, and we provide languages meeting the bound
(m+1)2"~! — 1. We strongly conjecture that this lower bound is tight, but have no proof.

We use the binary witnesses for the concatenation on DFAs to define binary languages K and L accepted by
an m-state and n-state AFA, respectively, such that the minimal AFA for KL requires 2™ + n + 1 states. This
proves that the upper bound 2™ + n + 1 from [3] is tight, and solves the open problem stated in Theorem 9.3
of [3].

2. PRELIMINARIES

In this section, we give some basic definitions and preliminary results. For details and all unexplained notions,
the reader may refer to [4, 12, 13].

Let ¥ be a finite alphabet of symbols. Then ¥* denotes the set of strings over ¥ including the empty string ¢.
A language is any subset of ¥*. The concatenation of languages K and L is the language KL = {uv | u € K
and v € L}. The cardinality of a finite set A is denoted by |A|, and its power-set by 24. We define an operator
© as follows: If ¢,5 € {0,1,...,n — 1}, then j©&¢ = (j — i) mod n, and if S C {0,1,...,n— 1}, then S©1i =
{joiljes}h

A nondeterministic finite automaton (NFA) is a quintuple N = (@, %, -, I, F'), where Q) is a finite set of states,
¥ is a finite alphabet, - : Q x ¥ — 2% is the transition function which is extended to the domain 29 x ¥* in
the natural way, I C @ is the set of initial states, and F' C @ is the set of final states. The language accepted
by N is the set L(N) ={w € X* | [ -wN F # 0}. For a symbol a and states p and ¢, we say that (p,a,q) is a
transition in NFA N if ¢ € p - a. For a string w, we write p — q if ¢ € p - w.

An NFA N is deterministic (DFA) and complete if |[I| = 1 and |q - a| = 1 for each ¢ in @ and each a in X. In
such a case, we write ¢ - a = ¢’ instead of ¢-a = {¢’'}. The state complezity of a regular language L, sc(L), is
the smallest number of states in any DFA for L.

The reversal LT of a language L is defined as L® = {w® | w € L}, where w is the mirror image of the
string w. For every finite automaton N = (Q,%,-, I, F) we can construct the automaton N¥ = (Q,%,-%  F,I)
where p € ¢-faiff g € p-a for every p,q in Q and every a in ¥. Then L(NT) = (L(N))%.

Every NFA N = (Q,%,-,I,F) can be converted into an equivalent DFA D = (29, %,/ I, F') where F' =
{S €29 | SNF #0}, and for every set S in 2¢ and every symbol a, we have S - a = S - a [11]. The DFA D is
called the subset automaton of the NFA N. The subset automaton may not be minimal since some of its states
may be unreachable or equivalent to other states.

We say that a state ¢ of an NFA N = (Q, X, -, I, F) is uniquely distinguishable if there is a string w which is
accepted by N from and only from the state ¢, that is, if we have p-wNF # 0 iff p = q.
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Proposition 2.1. If two subsets of states of an NFA differ in a uniquely distinguishable state, then the two
subsets are distinguishable in the subset automaton .

Proof. Let S and T be two subsets of states of an NFA N. Let ¢ be a uniquely distinguishable state of N such
that, without loss of generality, ¢ € S\ T. Then there is a string w which is accepted by N from and only
from q. It follows that w is accepted by the subset automaton of N from S and rejected from 7. Hence S and
T are distinguishable in the subset automaton of V. O

We say that a transition (p, a,q) is a unique in-transition in an NFA N if there is no state r with r # p such
that (r,a,q) is a transition in N. We say that a state q is uniquely reachable from a state p if there is a sequence
of unique in-transitions (g;—1,a;,q;) for i = 1,2,... k such that k > 1, go = p, and ¢ = q.

Proposition 2.2. Let a uniquely distinguishable state q be uniquely reachable from a state p. Then the state p
1s uniquely distinguishable.

Proof. Let a string w be accepted by an NFA N from and only from a state ¢. If (p, a, ¢) is a unique in-transition,
then the string aw is accepted by N from and only from the state p. Now the claim follows by induction. [

3. CONSTRUCTION OF NFA FOR CONCATENATION

Let K and L be accepted by minimal DFAs A and B, respectively. Without loss of generality, we may assume
that the state set of A is {qo,q1,---,qgm—1} with the initial state gy, and the state set of B is {0,1,...,n — 1}
with the initial state 0. Moreover, we denote the transition function in both A and B by -; there is no room for
confusion since A and B have distinct state sets. We first recall the construction of an NFA for the concatenation
of languages K and L.

Construction 3.1. (DFA A and DFA B — NFA N for L(A)L(B)).
Let A = ({q0,q1,--+,qm-1},2,,q0, Fa) and B = ({0,1,...,n —1},%,-,0, Fp) be DFAs. We construct NFA
N=({{q,q, -, Gm-1tU{0,1,....n—1},%,-, I, Fg) from DFAs A and B as follows:

e for each a in ¥ and each state q; of A, if q; - a € Fa, then add the transition (q;, a,0);
e the set I of initial states of N is {qo} if qo & Fa, and it is {qo,0} otherwise;
o the set of final states of N is Fp.

Using Construction 3.1, we get an upper bound on the state complexity of concatenation. Notice that the
bound depends on the number of final states in the DFA for the first language.

Proposition 3.2 (Concatenation: Upper Bound if |Fa| = k). Let A be an m-state DFA with k final states
and let B be an n-state DFA. Then we have sc(L(A)L(B)) < m2" — k271

Proof. Consider DFAs A = ({q0,q1,---+qm-1},2,",q0, Fa), where |Fy4| = k, and B = ({0,1,...,
n—1},%,-,0,Fp). Construct an NFA N for L(A)L(B) as in the construction above, and consider the cor-
responding subset automaton D. Since A is deterministic and complete, each reachable subset in D is of the
form {g;} U S, where S C {0,1,...,n — 1}. Moreover, if ¢; is a final state of A, then 0 € S since the NFA N has
the transition (g, a,0) whenever a state ¢ of A goes to a final state ¢; on a symbol a. If g is final, then D starts
in {qo,0}. It follows that no subset containing a final state of A and not containing state 0 is reachable in D.
Hence the subset automaton D has at most m2™ — k2"~ ! reachable subsets. O

Since m2" — k2”1 is maximal if k = 1, we get the following upper bound on the state complexity of
concatenation [10, 14].

Corollary 3.3 (Concatenation: Upper Bound). Let A and B be an m-state and n-state DFA, respectively.
Then sc(L(A)L(B)) < m2" —2n~1, O
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4. TERNARY AND BINARY WITNESS LANGUAGES

Motivated by the open problem from [3] concerning the tightness of the upper bound 2™ + n + 1 for concate-
nation on alternating automata, we study the state complexity of the concatenation of languages represented
by deterministic finite automata that have more than one final state. Let us start with the following observation
in which we assume that the state complexity of the second language is one.

Observation 4.1. Letm >1 and1 <k <m. Let A be an m-state DFA with k final states and B be a 1-state
DFA, both over an alphabet . Then sc(L(A)L(B)) < m —k + 1, and the bound is tight if [X] > 1.

Proof. If a complete DFA B has one state, then either L(B) =) or L(B) = X*. Since L(A) () = 0, and hence
sc(L(A)0) = 1, we assume that L(B) = ¥*. We construct the DFA for L(A)L(B) from A as follows: for every
final state p and every a in X, we replace the transition (p,a,q) by the transition (p,a,p). The resulting
automaton is deterministic and complete, has m states and k final states. All the final states are equivalent
since every string is accepted from any of them. Thus we can merge all final states into a single final state. This
gives the upper bound m — k + 1.

To prove tightness, let us consider the unary deterministic finite automaton A = ({0,1,...,
m—1},{a},-,0,{qg| m—k <qg<m—1}), where ¢-a =g+ 1modm for ¢ =0,1,...,m — 1. For each final
state p, we remove all the transitions going from p, and add the transition (p,a,p) to get a DFA for L(A) X*.
Then we merge all final states into a single final state. The resulting minimal automaton accepts the language
a™ *a* and has m — k + 1 states. O

In what follows, we assume that the state complexity of the second language is at least two. We inspect three
worst-case examples from the literature, and modify them by making some states in the first automaton final.
To simplify the proofs, we use the property of all these witnesses that the letter a performs the permutation
@i * @ = q(i+1) mod m i A and a permutation in B. If these two conditions are satisfied, then we get the following
observation.

Lemma 4.2. Let A= ({qo,q1,---sqm-1}2,",90,{q | m—k <i<m—1}) and B = (Qp,%,-,0,Fp), where
Qs =10,1,...,n — 1}, be DFAs. Assume that there is a symbol a in X such that g; - @ = q(;41) mod m and the
symbol a performs a permutation on Qp. Let N be an NFA for L(A)L(B) from Construction 3.1. Then in the
subset automaton of N, we have

1. For each subset S of Qp with 0 € S, the set {qm—x} US is reachable from a set {qm—r—1}US’, where
S'CQp and |S'| =S| —1;

2. For each subset S of Qp and each i =1,2,...,m—k—1, the set {q;} US is reachable from a set {qo} US’,
where S’ C Qp and |S'| = |5|;

3. Moreover, if 0-a = 0, then for each subset S of Qp with 0 € S and for each i =0,1,...,m — 1, the set
{q:} US is reachable from a set {qm—r—1}US’", where 8" C Qp and |S’| = |S| — 1.

Proof. Since a is a permutation on Qp, we can use ¢-a~' to denote the state p with p-a = ¢. Next, we can
extend a~! to subsets of @5 and to a~* for every positive integer 1.

1. Let 8" = (S\ {0})-a~!. Then |S’| = |S| — 1 and the set {g,,_x} U S is reached from {q,,_r_1} U S’ by a.
2. Let S’ = S-a~ % wherei=1,2,...,m—k—1. Then |S’| = |S| and the set {g;} U S is reached from {go} U S’

by a’.
3. Let 8" = (S\ {0})-a=*+1+9) where i = 0,1,...,m — 1. Then |S’| = |S| — 1 and {¢;} U S is reached from
{gm-r_1}US" by a**1* since 0 - a = 0. O

Ternary witness languages meeting the upper bound m2™ — 2”1 for concatenation are described in Theo-
rem 2.1 of [14]. We modify these languages by making k states final in the first DFA. Then we prove that the
state complexity of the resulting concatenation meets the upper bound m2" — k271,
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FIGURE 1. Ternary witnesses for concatenation meeting the upper bound m2" — k2"~1; m = 6,
k=3, and n = 5.

FIGURE 2. An NFA N for L(A)L(B), where DFAs A and B are shown in Figure 1.

Lemma 4.3 (Ternary Witness Automata with |Fa| =k and |Fg| = 1). Let myn >2 and 1 < k <
m — 1. There exist a ternary m-state DFA A with k final states and a ternary n-state DFA B such that
sc(L(A)L(B)) = m2™ — k2"~ 1.

Proof. Define an m-state DFA A = ({qo,41,---,qm-1},{a,b,¢c},, g0, Fa), where Fa = {qg; | m—k <i<m-—1}
and for each 7 in {0,1,...,m — 1}, we have

¢i * @ = G(i41) mod m> qi - b = qo, and qi - ¢ = g

Define an n-state DFA B = (@p, {a,b,c},-,0,{n—1}), where Qg = {0,1,...,n—1} and for each j in Qp, we
have

j-a=17j, j-b=(j+1) modn, and jre=1.

The DFAs A and B, where m = 6,k = 3, and n = 5, are shown in Figure 1.

Construct an NFA N for L(A)L(B) from DFAs A and B by adding transitions (¢;—1,a,0) and (g;, ¢,0) for
each i with m — k <i < m — 1; the initial state of N is qg, and the set of final states is {n — 1}. Figure 2 shows
the NFA N resulting from DFAs A and B from Figure 1. Let R be the following family of m2"™ — k2"~! subsets
of states of the NFA N:



158 M. HOSPODAR AND G. JIRASKOVA

R={{g:}US|0<i<m—k—1and S CQp}U
{fa}uS|m—k<i<m—1,SCQpand0e S}

To prove the lemma, we only need to show that each subset in R is reachable in the subset automaton of N,
and that all these subsets are pairwise distinguishable.

We first prove reachability. The proof is by induction on |{¢;} U S|. The basis, |{¢;} US| = 1, holds true since
{qo} is the initial subset of the subset automaton, and it goes to the subset {g;} by a’ if 1 <i <m —k — 1.
Let 1 <t < n, and assume that each subset in R of size ¢ is reachable. Notice that the symbol a performs the
permutation ¢; - @ = q(j+1) mod m On states of A and a permutation on states of B and moreover 0-a = 0. By
Lemma 4.2 case 3, each set {¢;} US of size t + 1, where m —k <i<m—1and S C Qp with 0 € S, can be
reached from a set of size ¢. Next, by Lemma 4.2 case 2, each set {¢;} US of size t + 1 where 1 <i<m —k—1
is reached from a set {go} U S’ of size ¢t + 1. Hence it is enough to show the reachability of sets {qo} U S for
every subset S of @p such that [{go} US| =+ 1. We have

{gm1}U(SEemins)-a' % {g) U(Semins) L5 (g} us,

where 0 € S © min S and the set {g,,—1} U (S ©min S) can be reached from a set of size ¢ by Lemma 4.2 case 3.
This proves reachability.

To prove distinguishability, let {¢;} US and {g;} UT be two distinct subsets in R. Notice that the state n —1
is uniquely distinguishable in NFA NV since it is a unique final state. Next, the state n — 1 is reached from each
state of @p in the subgraph of unique in-transitions (¢,b,t + 1) where 0 < t < n — 2. It follows that each state
in @ p is uniquely distinguishable. By Proposition 2.1, if S # T', then {¢;} US and {g;} UT are distinguishable.
Now let S =T. Then i # j, and without loss of generality, 0 < i < j < m — 1. There are three cases:

1. Let i < m—k < j, that is, ¢; is non-final and ¢; is final in A. Then 0 ¢ ({¢;}US) ¢, but 0 € ({g;}US)-¢,
so after reading c, the resulting sets differ in state 0 and are distinguishable as shown above.

2. Let m — k < i < j, that is, both ¢; and g; are final in A. Then we read a™ 7 and get the sets {go} U S
and {¢m—j4+i} U S which are considered in case 1.

3. Let ¢ < j < m —k, that is, both ¢; and ¢; are non-final in A. Then we read a™ k=7 and get the sets
{@m-k—j+i} US and {gmn—r} U {0} US which either differ in state 0 or are considered in case 1.

This proves distinguishability and concludes our proof. ]

Yu et al. [14] left the binary case open. Later, a paper by Maslov [10] was found, in which the author describes
binary witnesses meeting the upper bound m2” — 2"~ ! assuming that n > 3. Let us show that his witnesses,
modified to have k final states in A as shown in Figure 3 for m = 6,k = 3, and n = 5, meet the upper bound
m2" — k2"~ ! whenever n > 3.

Lemma 4.4 (Binary Witnesses with |Fs| =k and |Fg| =1; n > 3). Let m > 2, n >3, and 1 <
k < m — 1. There exist a binary m-state DFA A with k final states and a binary n-state DFA B such that
sc(L(A)L(B)) = m2" — k2"~ 1.

Proof. Define an m-state DFA A = ({qo,41,---,qm-1},{a,b},-,q0,Fa), where Fy = {q; | m —k <i<m—1}
and for each i in {0,1,...,m — 1}, we have ¢; - @ = q(i11) mod m and ¢; - b = ;.

Define an n-state DFA B = ({0,1,...,n — 1},{a,b},-,0,{n — 1}), where for each state j of B, we have
jra=jifj<n—-3,(n—2)-a=n—-1,(n—1)-a=n—-2,and j-b=j+1ifj<n—-2,(n—1)-b=n—1.

The DFAs A and B, where m = 6,k = 3, and n = 5, are shown in Figure 3.

Construct an NFA N for L(A)L(B) from DFAs A and B by adding transitions (g;—1,a,0) and (g;,b,0) for
each i with m — k < i < m — 1; the initial state of N is gy, and the set of final states is {n — 1}. Let R be the
same family of m2™ — k2"~! subsets as in the previous proof. We need to show that all sets in R are reachable
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NN

FIGURE 3. Binary witnesses for concatenation meeting the upper bound m2" — k2" ~! assuming
that n >3;m=6,k=3,n=>5.

and pairwise distinguishable in the subset automaton of N. The proof of reachability is exactly the same as in
the proof of Lemma 4.3.

To prove distinguishability, let {¢;} U S and {g;} UT be two distinct subsets in R. Notice that the state
n — 1 is uniquely distinguishable since it is a unique final state in N. Next, the state n — 1 is uniquely reachable

from each state in {0, 1,...,n — 1} through the following unique in-transitions 0 LA T LN JA I B 01
follows that each state in {0, 1,...,n — 1} is uniquely distinguishable. By Proposition 2.1, if S # T, then {¢;} US
and {¢;} UT are distinguishable. Now let S = T'. Then ¢ # j, and without loss of generality, 0 <i < j <m —1.
There are four cases:

1. Let i <m—k < j,s00 & S. Then we read b and get {¢;} U (S -b) and {¢;} U {0} U (S -b), which differ in
state 0 since 0 ¢ S - b.

2. If m — k <i < j, then we read ™7 and get {gm—j+:} U (S-a™ ) and {go} U (S -a™ ), which are
considered in case 1.

3.Ifi<j<m—kand 0€S, then we read a™ %7 and get {gn_k—j+i} U(S-a™ %) and {gn_r} U
(S - a™ *=7), which are considered in case 1.

4. Ifi<j<m—kand0¢S, then we read a™ %7 and get {gm—r—;+i} U (S-a™ ¥ ) and {gm_i}U{0}U
(S -a™~*=7), which differ in state 0.

This concludes our proof. ]

While the ternary witnesses from Lemma 4.3 require m > 2 and n > 2, the binary witnesses from Lemma 4.4
do not work if n = 2. In Theorem 1 from [5], binary witnesses for m > 1 and n > 2 are described. However, the
proof of Theorem 1 from [5] does not work. For example, it is claimed that the set {gm—g—1,J2 — 1,...,7s — 1}
goes to {¢m—_k+1,0,752,..,7s} by aab”™1; cf. line -4 on page 515. In fact it goes to {¢m_r+1,0}. Such an error
occurs several times in the proof, namely, on line -2 on page 515, and on lines 2 and 8 on page 516. The authors
overlooked that ab”~! does not perform an identity on {0,1,...,n — 1}, but moves this set to {0}. Here we
provide a correct proof.

Lemma 4.5 ([5], Binary Witness Automata with |Fa| = k and |Fg| =1). Let m > 1 and n > 2.
Letk=1ifm=1, and 1 <k <m — 1 otherwise. There exist a binary m-state DFA A with k final states and
a binary DFA B such that sc(L(A)L(B)) = m2" — k2"~ 1.

Proof. Define an m-state DFA A = ({q0,¢1,---,qm—1},{a,b},",qo, Fa), where Fa ={q; | m—k <i<m—1}
and for each i in {0,1,...,m — 1}, we have ¢; - @ = q(i11) mod m and ¢; - b = g;.

Define an n-state DFA B = ({0,1,...,n — 1},{a,b},-,0,{n — 1}), where for each state j of B, we have
jra=(j+1)modn,0-b=0, and j-b=(j+1) mod n if j > 1. The DFAs A and B, where m = 6,k = 3, and
n = 5, are shown in Figure 4.

First let m = 1, so L(A) = {a,b}*. Construct an NFA N for L(A)L(B) from the DFA B by adding
the transition (0,a,0). In the subset automaton of N, the singleton set {0} is the initial subset, and each
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FIGURE 4. Binary witnesses meeting the bound m2" — k2", m =6, k = 3, and n = 5 [5].

subset S of size ¢ + 1 such that 0 € S is reached from the subset (S '\ {0}) © min(S \ {0}) of size ¢ by the
string ab™(S\MOD—1 Since the state n — 1 is uniquely distinguishable and uniquely reachable from every
other state in {0,1,...,n — 1}, all the states of the subset automaton of N are pairwise distinguishable by
Proposition 2.1. Hence sc(L(A)L(B)) = 2"~

Now let m > 2. Construct an NFA N for L(A)L(B) from DFAs A and B as in the Construction 3.1. Let R
be the same family of m2™ — k2"~! subsets as in the proof of Lemma 4.3. Let us show that each subset {¢;} U S
in R is reachable in the subset automaton of N. The proof is by induction on [{g;} U S]|.
The basis, with |[{g;} U S| < 2, holds true, since we have

(oo} S {g} A<i<m—k-1),

{@m-r—1} = {gm—k, 0} RN {@m—1+i,0} (1 <i<Ek-1),
{am-1,0} = {qo,1} £> {90,7} 2<j<n-1),

{g0,n — 1} > {q0, 0},

(60,7 €1} 5 {gij} (1<i<m—k—1).

Let 1 <t < n, and assume that each set in R of size t is reachable. By Lemma 4.2 case 1, every set {¢m—r}US
in R of size ¢t + 1 is reachable from a set in R of size t. Now let {g;} US be a set in R of size ¢t + 1 with i #£ m — k.
Consider four cases:

(i) Let m—k+1<i<m-—1,500€S. Take S’ = S\ {0}. Then

pmin s’—1

{gi1}U(S"©minS") L{g}u{0}U (S’ © (mins —1)) —— {g} US;

notice that 0 € S © min S’. This proves this case by induction on 1.

(it) Let i =0and 0 ¢ S. Then {¢mn—1} U (S ©minS) LN {q0} U S, where the former set is considered in
case (1).
(i) Let i =0 and 0 € S. Take S’ = S\ {0}. Then {g,,,_1} U (S’ ©minS ) U {n -1} & {g}u{0}uU (S’ o

min S’ —1
(min S’ — 1)) LA {qo} U S, where the first set is considered in case (3).

(i) Let 1 <i<m—k —1. Then {¢;} US is reachable by Lemma 4.2 case 2.

To prove distinguishability, let {¢;} U S and {¢;} UT be two distinct subsets in R. Notice that the state
n — 1 is uniquely distinguishable since it is a unique final state of N. Next, the state n — 1 is uniquely reachable
from states in Qp since for every j = 0,1,...,n — 2 the transition (j,a,j + 1) is a unique in-transition. By
Proposition 2.1, if S # T, then the sets {¢;} U S and {¢;} UT are distinguishable.
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TABLE 1. The state complexity of concatenation if the witness languages from [5, 10, 14] have
the second half of their states final; in rows we have m, in columns n.

Upper bound Maslov [10] YZS [14] JJS [5]
2 4 6 2 4 6 2 4 6 2 4 6
2 6 24 96 ) 4 18 6 14 27 6 22 84
4 12 48 192 10 5) 35 12 28 54 12 42 156
6 18 72 288 15 6 52 18 42 81 18 63 225

Now let S =T, s0i < j. If S =0, we read a™ %7 and get {qm—k—j+i} and {gm—,0}. If S # 0, we first read
a™ I to get {¢m—1-j+i,0} and {gm—1,0}. Now we read a. There are two sub-cases:

1. If m — j+i>m — k, then we get {gm—;+i,0,1} and {qgo, 1} which are distinguishable.

2. If m—j+i<m~—k, then we get {gm_jri,1} and {qgo,1}. Then we read a(m—*=D=(m=itipn anqd
get {gm—r—1,0} and {gj_;—x—1,0}. Finally we read a and get {gm—x,0,1} and {gj_;—x, 1}, which are
distinguishable. O

Our next goal is to describe, for all m, n, k, £ with n > 2, two DFAs of m and n states, and k and £ final states,
respectively, meeting the upper bound m2™ — k2"~! on the complexity of the concatenation of their languages.
We try to modify the witness automata in all cases, by making the second half of their states final. The upper
bound in such a case is 3m - 2772,

Table 1 shows that none of the three witnesses presented in [5, 10, 14] meets this bound. Even making two
states final in DFA B, results in a complexity of concatenation less that m2™ — 2-2"~! in all three cases.
Therefore we present new pairs of witness languages. To cover all possible values of m,n, k, £, we modified the
witness from Theorem 1 of [5] by defining transitions on a new symbol c¢. Notice that making some states final
in DFA B does not play any role in the proof of reachability. We use the new symbol ¢ only in the proof of
distinguishability.

Theorem 4.6 (Ternary Witness Languages with |Fa| = k and |Fg| =£). Let m > 1 and n > 2. Let
kE=1lifm=1and1 <k <m—1 otherwise. Let 1 < { < n—1. There exist a ternary DFA A with m states and
k final states and a ternary DFA B with n states and ¢ final states such that sc(L(A)L(B)) = m2™ — k2"~ 1.

Proof. Define an m-state DFA A = ({q0,q1,---,qm-1},{a,b,¢}, -, qo, Fa), where Fa ={q; | m—k <i<m—1}
and for each 7 in {0,1,...,m — 1}, we have ¢; - a = q(i+1) mod m>Gi - b= ¢qi, and ¢; - ¢ = q;,

Define an n-state DFA B = ({0,1,...,n —1},{a,b,c},-,0,{n —1}), where Fg ={j | n—¢ <j <n—1} and
for each state j of B,

j-a=(j+1) modn,
0-6=0, j-b=(+1)modnifj>1,
jre=0ifj<n—-2, (n—1)-c=n-—1.

The DFAs A and B, where m = 6,k = 3,n =5, and £ = 2 are shown in Figure 5. Notice that the transitions
on a and b are the same as in Theorem 1 of [5].

Construct an NFA for L(A)L(B) from DFAs A and B as described in Construction 3.1. Since the transitions
on a and b are the same as in DFAs in the proof of Lemma 4.5, the proof of reachability is the same; notice
that making some states final in DFA B does not play any role in the proof of reachability.

We only need to prove distinguishability. To this aim, let {¢;} U S and {¢;} U T be two distinct reachable
subsets. Notice that the state n — 1 is uniquely distinguishable by the string ¢ since we have £ < n — 1, so state 0
is not final. Next, the state n — 1 is uniquely reachable from all states in @) g through unique in-transitions on a.
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FIGURE 5. Ternary witnesses meeting the bound m2" — k2" ';m =6,k =3, n =5, and / = 2.

It follows that {¢;} US and {¢;} UT are distinguishable if S # T. Now let S = T'. In this case we continue
exactly the same way as in the proof of Lemma 4.5. O

We have proven that for every number of states in A and B, except for one state in B, and every number
of final states in A and B, except for none or all, there exist ternary automata meeting the upper bound
m2" — k2"~ for concatenation of their languages. We might ask whether there are binary languages with more
final states in B meeting this bound. We provide a positive answer in the next theorem. However, notice that
we require k < m — 2 here, that is, the first DFA must have at least two non-final states.

Theorem 4.7 (Binary Witness Automata with |[Fa| <m —2). Letm >3, n>4,1<k<m-—2, and
1</l <n-—1. There exist a binary DFA A with m states and k final states and a binary DFA B with n states
and ¢ final states such that sc(L(A)L(B)) = m2™ — k2n~1.

Proof. Define an m-state DFA A = (Qa,{a,b},, qo, Fa), where we have Q4 = {q0,q1,---,qm-1}, Fa = {¢ |
m—k <i<m—1}, and for each 7 in {0,1,...,m — 1},

¢ @={q@Gf1)modms d0o-b=qo and ¢i-b=¢1if1<i<m-1

Define an n-state DFA B = (@Qp,{a,b},-,0,{n — 1}), where Qp = {0,1,...,n — 1}, Fg = {n—¥€,n — L+
1,...,n—=1}if£<n—2 and Fg = Qp \ {1} if £ = n — 1. For each state j of B, we have

a =0, jra=7j+1if1<j<n-2, and (n-1)-a=1,
0-b=1, 1-b=2, and j-b=jif2<j<n-1.

The DFAs A and B, where m = 6,k = 3,n =5, and £ = 2 are shown in Figure 6; notice that the DFA B is the
same as in [2]. Since k < m — 2, the states gy are g1 are never final. By definition of B, state 1 is not final either.
Construct an NFA N for L(A)L(B) as described in Construction 3.1. We prove that the subset automaton

of N has m2" — k2"~ ! reachable and pairwise distinguishable states. The proof of reachability is by induction
on [{q;}US]|.

The base, with |{g;} US| = 1, holds true since {qo} LN {¢;} for 1 <i <m —k — 1. By Lemma 4.2, we need
only to prove that every set {go} US of size t + 1 and 0 ¢ S is reachable. Let S' = ((S© (min S — 1))\ {1}) U{0}.
Then |S’| = |S| and 0 € S’. By Lemma 4.2 case 3, the set {go} U S’ is reachable from a set of size t. Next we
have

; blab)y™ St )
{ao}US ————{aw}US5;

notice that 1 € S © (min S — 1) and qq ab, qo, because ¢ ¢ Fy since k < m — 2. This proves reachability.



COMPLEXITY OF CONCATENATION ON DETERMINISTIC AND ALTERNATING FINITE AUTOMATA 163

B CEOZ0S0Z020

FIGURE 6. Binary witnesses meeting the bound m2™ — k2"~ ! in the case k < 2 (modified from
[2]);m=6,k=3,n=5 (=2

n—4 . )
To prove distinguishability, we use the string w = [] a"3~"™a**"2. We have
i=0

{2hw=1{2) (@s\{2}) w={1}; Qa-wCQaU{0,1}.

We now use these properties to prove distinguishability. Let {¢;} U .S and {¢;} UT where ¢,j € {0,1,...,m — 1}
and S,T C {0,1,...,n — 1} be two reachable states of the subset automaton of N. We consider several cases:

1. If2€ S and 2 ¢ T, then

(g} U S 2 gy u{2,3) Y2 {3 U 1,3}, and

(G UT 2 (goh U2} 22 (g u 1),

If 3 € Fg, we have distinguished the sets. If not, we read ™ *~2 and distinguish the sets since all states
j with j < n — £ are non-final.

2.If1<s<n—-lands#2,s€ S and s ¢ T, we read a""1~° to get the case 1.

If0€ S and 0 ¢ T, we read b to get the case 2.

4. If S=Tand 1 <i<m—k <j, weread ba and get {¢;} US -ba and {g;} U{0} U S - ba. Since 0 ¢ S - ba,
we get the case 3. If 0 =i < m — k < j, we read ba and get {¢1} US -ba and {¢;} U{0} U S - ba. We again
get the case 3.

5. If m — k < i < j, we read the string a™ 7 and get {gm—j+i} US-a™ 7 and {go} US -a™ 7, which is
considered in the case 4.

6. If i < j < m —k, we read the string a™ %7 and get {gm_k—j+i} US - a™ %I and {gn_r} U {0} U
S-am k=i Tf0¢ S -amF I, we get the case 3. If 0 € S - a™ k=7 we get the case 4. O

@

5. BINARY CONCATENATION; |F4| =m —1 AND 2 < |Fg| <n-—1

Now we turn our attention to the concatenation of binary languages represented by m-state DFA with m — 1
final states and n-state DFA with more than one final state. In the general case, the upper bound is (m +1)271.
The next theorem provides a lower bound that is smaller just by one. Our computations show that no pair of
binary languages meets the bound (m + 1)2"~! in the case of m,n < 4.

Theorem 5.1 (Binary Concatenation with |Fa| = m — 1; Lower Bound). Let m,n >3 and 2 < { <
n — 1. There exist a binary DFA A with m states and m — 1 final states and a binary DFA B with n states and
¢ final states such that sc(L(A)L(B)) > (m +1)2"~1 — 1.
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FIGURE 7. The binary DFAs meeting the bound (m + 1)2"~t —1; m =6, k =5, n =5, and
{=2.

Proof. Define an m-state DFA A = ({q0,4q1,---,qm—-1},{a,b},,q0, Fa), where Fa = {q1,q2,---,Gm-1}, and for
each ¢ in {0,1,...,m — 1},

qi * @ = {q(i4+1) mod m and qi-b=gq.

Define an n-state DFA B = ({0,1,...,n—1},{a,b},,0, Fg), where we have Fp = {j |[n — £ < j <n—1}, and
for each j in {0,1,...,n — 1},

jra=(j+1) modn,
0:-6=0, j-b=((+1)mod(n—-1)if1<j<n—-2, (n—1)-b=(n-1).

The DFAs A and B for m =6,k =5,n =5, and £ = 2 are shown in Figure 7.

Construct an NFA N for L(A)L(B) from DFAs A and B as described in Construction 3.1. We prove that the
subset automaton of N has (m + 1)2"~! — 1 reachable and pairwise distinguishable states. To this aim, consider
the following family of (m + 1)2"~! — 1 subsets:

R={{p}uUX|XC{0,1,...,n—1}and X #{n—-1}} U
HauluX|1<i<n-1,XC{0,1,...,n—1}, and 0 € X}.

First we prove that each set in R is reachable. The proof of reachability is by induction on |g; U X]|.

The basis, with |S| < 2, holds true since {go} is the initial subset, {qo} = {q1,0}, and {4(i=1) mod m» 0} ab,
{q;,0} for i =0,1,...,m — 1.

Let 2 <t < n and assume that each subset in R of size t is reachable. By Lemma 4.2, we only need to prove
that every set {go} US of size t +1 and 0 ¢ S is reachable. To show that {go} U S is reachable, recall that
{gm-1} U (S ©min S) is reachable by Lemma 4.2 case 3 since 0 € S © min S. Next we have

bmin S—1

{gm-1}U(SeminS) % {g}U(SS (minS —1)) — {g} US.

This proves reachability.

To prove distinguishability, let {¢;} U S and {¢;} UT be two distinct sets in R. In a similar way as in the
proof of Lemma 4.5, we can show that for every state ¢, 0 <t < n — 1, the string a” 1 ~th(ab”2)"3 is accepted
by NFA N only from t. It follows that the sets {¢;} U S and {g;} UT are distinguishable if S # T

If S =T, then we may assume that S # () because {qo} is the only reachable set of size one. Thus we need
to distinguish the sets {¢;} U S and {¢;} U S, where S # 0 and i # j. We first read (ab""2)"2 to get {q,,0}



COMPLEXITY OF CONCATENATION ON DETERMINISTIC AND ALTERNATING FINITE AUTOMATA 165

and {gy,0} with = # y; notice that both symbols a and b perform a permutation on the states of DFA A. We
may assume that z < y. Consider two cases:

1. If y=m — 1, we use a to get {gy+1,0,1} and {qo, 1}, which differ in state 0.
2. If y <m — 1, then we use (ab)™ '7¥ to get {qut+m—1—y,0} and {gn—1,0} which are considered in case 1.

This completes our proof. O

6. CONCATENATION ON ALTERNATING FINITE AUTOMATA

In this section, we consider the concatenation operation on alternating finite automata (AFAs) [3]. Our aim
is to describe languages K and L accepted by an m-state and n-state AFA, respectively, such that the minimal
AFA for the language K L requires 2™ + n + 1 states. This solves an open problem stated by Fellah, Jiirgensen,
and Yu in [3], where the upper bound is proven to be the same. First, let us give some basic definitions and
notations. For details, we refer the reader to [1, 3, 7-9, 12].

An alternating finite automaton (AFA) is a quintuple A = (Q, X%, 4, s, F'), where @ is a finite non-empty set
of states, @ = {q1,-..,¢n}, X is an input alphabet, § is the transition function that maps @ x ¥ into the set
B,, of boolean functions over the n variables qi,...,q,, s € @ is the initial state, and F C @ is the set of final
states. For an example, consider AFA A; = ({q1, ¢}, {a,b},,q1,{q2}), where transition function ¢ is given in
Table 2.

TABLE 2. The transition function of the alternating finite automaton A;.

1) a b
Q1 Q1 Vg2 Q1
q2 q2 q1 N g2

The transition function ¢ is extended to the domain B,, x ¥* as follows: For all g in 5,,, a in 3, and w in 3%,
6(g.€) = g;if g =g(q1,...,qn), then 6(g,a) =g(6(q1,0a),...,d(qn,a)); 6(g,wa) = 6(5(g,w), a).

Next, let f = (f1,..., fn) be the Boolean vector with f; = 1 iff ¢; € F. The language accepted by the AFA
A is the set L(A) = {w € X* | §(s,w)(f) = 1}.

In our example we have §(q1,ab) = 6(d(q1,a),b) = 6(q1Vg2,b) = 1 V(@A N q2) = q1 V g2. To determine whether
ab € L(A;), we evaluate d(q1,ab) at the vector f = (0,1). We obtain 1, hence ab € L(A;).

Recall that the state complexity of a regular language L, sc(L), is the smallest number of states in any DFA
accepting L. Similarly, the alternating state complexity of L, asc(L), is the smallest number of states in any
AFA for L. Tt follows from Theorem 4.1, Corollary 4.2 of [3] and Lemma 1, Lemma 2 of [7] that a language L
is accepted by an n-state AFA if and only if L is accepted by a DFA with 2" states and 2" ! final states. As
this is a crucial observation for this section, we restate these results and provide proof ideas.

Lemma 6.1 ([3, 7]). Let L be a language accepted by an n-state AFA. Then the reversal LT is accepted by
a DFA of 2" states, of which 2"~ are final.

Proof Idea. Let A = ({q1,92,---,aqn},2,0,q1, F) be an n-state AFA for L. Construct a 2"-state NFA A’ =
({0,1}™,%,8,5,{f}), where

e for every u = (uy...,uy) € {0,1}" and every a in X,

8 (u,a) = {u' €{0,1}" | 6(gi,a)(w') =wu; fori =1,...,n};

o S={(b1,...,by) €{0,1}" | by =1}

° f: (fl,...,fn) G{O,l}n with fzzl 1ﬁq, eF.
Then L(A) = L(A"), NFA A’ has 2”1 initial states and (A’)® is deterministic. It follows that L is accepted
by a DFA with 2" states, of which 2”~! are final. O

Corollary 6.2. For every reqular language L, asc(L) > [log(sc(L®))].
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Lemma 6.3 (cf. [7], Lem. 2). Let L be accepted by a DFA A of 2" states, of which 2"~1 are final. Then L is
accepted by an n-state AFA.

Proof Idea. Consider 2"-state NFA A’ for L which has 2"~! initial states and exactly one final state. Let the
state set Q of AF be {0,1,...,2" — 1} with initial states {2"~!,...,2" — 1} and final state k. Let § be the
transition function of A”. Moreover, for every a € ¥ and for every i € @, there is exactly one state j such that
§ goes to i on a in AT. For a state i € Q, let bin(i) = (b1, ..., b,) be the binary n-tuple such that bybs - -- b, is
the binary notation of i on n digits with leading zeros if necessary.

Define an n-state AFA A’ = (Q',%,0',q1, F'), where Q" = {q1,...,qn}, F' = {q¢ | bin(k), = 1}, and for each
iin Q and ain ¥, (§'(q1,a),...,8 (gn,a))(bin(i)) = bin(j) where i € §(j,a). Then L(A") = L(AR). O

By Corollary 6.2, we have asc(L) > [log(sc(L?))]. The upper bound for concatenation on AFAs is 2™ +n+1,
as proven by Fellah et al. Theorem 9.3 of [3]. They conjectured that this bound is tight.

In [7], the lower bound 2™ + n was proven, however, the witnesses from Theorem 1 of [5] with half of states
final in both automata were used. As we mentioned above, ¢f. Table 1, these witness languages do not meet the
upper bound for concatenation on DFAs. Hence the proof in Theorem 5 of [7] is not correct, so the problem is
still open. Our next aim is to prove the tightness of the upper bound 2™ + n 4 1 for concatenation on AFAs.
We might use the ternary witness from Theorem 4.6, but, as we show below, for asc(K) > 2, asc(L) > 2, it
is sufficient to use the binary witness languages described in the proof of Theorem 4.7 to get languages that
meet the upper bound 2™ + n + 1 for concatenation on AFAs. The following lemma not only proves the claim
in Theorem 5 of [7], but also solves the open problem mentioned above.

Lemma 6.4 (Concatenation on AFAs: Lower Bound). Let m,n > 2. There exist binary languages K and
L accepted by an m-state and n-state AFA, respectively, such that asc(KL) =2™ +n+ 1.

Proof. Let L be the binary regular language accepted by the minimal DFA A from the proof of Theorem 4.7,
with 2" states and 2"~! final states. Let K be the binary regular language accepted by the minimal DFA B
from the proof of Theorem 4.7, with 2 states and 2! final states. Then, by Lemma 6.3, the languages K
and L are accepted by an m-state and n-state AFA, respectively. Using Theorem 4.7, we get

sc((KL)®) = sc(LRKR) = 2m . 92" —gn=1.92"—1 — on=1.92"(1 4 1/9),

By Corollary 6.2, we have asc(KL) > [log(2"~!-22" (14 1/2))] = 2™ +n.

Our next aim is to show that asc(K'L) > 2™ + n + 1. Suppose for a contradiction that KL is accepted by
an AFA of 2™ + n states. Then (KL)"® is accepted by a 22" *"-state DFA with 22" *"~1 final states. It follows
that the minimal DFA for (K L) has at most 22" 7~ final states. However, the minimal DFA for (K L)% has
gn92™ _ 9n=192" 1 gtates, of which 27122" " 4 27=192" "' =1 41 non-final; notice that {¢;} U S is non-final iff
i<2 1 —1and SC{0,1,...,2" ' —1}or 2" 1 <i<2" —1and S C{0,1,...,2" 1 — 1} with 0 € S. Thus
the number of final states in the minimal DFA for (KL)% is

2n—1(22m + 22m—1) - 2n—1(22m*1 + 227”*1—1)’
and since m > 2, we get

2n71(22m + 22*”71) _ 2n71(22’"—1 + 22’"—171) _

m 1 1 1
22 2"—1<1+ - >>

2 2277171 2277171_;'_1



COMPLEXITY OF CONCATENATION ON DETERMINISTIC AND ALTERNATING FINITE AUTOMATA 167

m

Hence, the minimal DFA for (KL)® has more than 22" +"~! final states, a contradiction. It follows that
asc(KL) > 2™ 4+ n + 1, which proves the theorem. O

We continue with examining the complexity of concatenation of unary AFA languages. Since the reverse of
every unary language is the same language, we get that a unary language is accepted by an n-state AFA if and
only if it is accepted by a 2"-state DFA with 2"~! final states. So in order to have languages K and L accepted
by an m-state and n-state AFA, respectively, we only need to find unary languages K and L represented by a
2™-state and 2"-state DFA with half states final, respectively. The next lemma shows that the upper bound for
binary AFAs cannot be met in the unary case. Then we provide a lower bound.

Lemma 6.5 (Concatenation of Unary AFAs; Upper Bound). Let m,n > 1. Let K and L be unary
languages accepted by an m-state and n-state AFA, respectively. Then asc(KL) < m+n + 1.

Proof. By Lemma 6.1, the unary language K is accepted by a 2™-state DFA with 2™~ ! final states and L is
accepted by a 2"-state DFA with 27! final states. It follows that K L is accepted by a DFA with 2 - 2" states,
as is proven in Theorem 5.5 of [14]. By adding some final or non-final unreachable states, we can construct an
equivalent DFA with 277+ states and 2" final states. By Lemma 6.3, the language K L is accepted by an
(m+n + 1)-state AFA. O

Lemma 6.6 (Concatenation of Unary AFAs; Lower Bound). Let m,n > 1. There exist unary languages
accepted by an m-state and n-state AFA, respectively, such that asc(KL) > m +n — 1.

Proof. We have ged(2m™~ 1,277t +1) = 1.

Consider DFA A = ({0,1,...,2™ —1},{a},-,0,{i | 2" 1 =1 <i<2m - 2}), where i -a=i+1if 0 <i <
2m=1 _1 and i-a = 0 otherwise. Thus A has 2™ states and 2™~ final states, so L(A) is accepted by an m-state
AFA: notice that only 2! states are reachable in A.

Next, consider DFA B = ({0,1,...,2" —1},{a},-,0,{j | 2" ! <j<2" —1}), where jra=j+1if0<j <
2"~1 and j-a = 0 otherwise. Similarly as above, L(B) is accepted by an n-state AFA, and this time only 2"~ 41
states are reachable in B. As shown in Theorem 5.4 of [14] sc(L(A)L(B)) = 2™~ 1. (2n~1 4 1) = 2m+n=2 4 gm—1,
By Lemma 6.3, we have asc(L(A)L(B)) >m+n — 1. O

As a corollary of Lemmas 6.4, 6.5, and 6.6, we state the following theorem.

Theorem 6.7 (Concatenation on AFAs). Let m,n > 2. Let K and L be languages over an alphabet ¥
accepted by an m-state and n-state AFA, respectively. Then asc(KL) < 2™ +n+ 1, and this bound is tight if
|2 > 2. If |X| =1, then asc(KL) < m+n+ 1. There exist unary m-state and n-state AFA languages meeting
the bound m +n — 1.

7. CONCLUSIONS

We studied the state complexity of the concatenation of languages represented by deterministic and alter-
nating finite automata. First, we described ternary languages meeting the upper bound m2"” — k2"~1 for all
possible values of m,n, k, £, where m and k is the number of states and the number of final states in the minimal
DFA for the first language, and n and /¢ is the number of states and the number of final states in the minimal
DFA for the second language. Then, in the case of k¥ < m — 2, that is, if the first automaton has at least two
non-final states, we described appropriate binary languages. Finally, we considered the case of k = m — 1 and
¢ > 2 over a binary alphabet, and obtained a lower bound that is smaller than the corresponding upper bound
just by one. We strongly conjecture that our lower bound is tight in this case.

We used our binary witnesses for the concatenation on DFAs to define binary languages K and L accepted by
an m-state and n-state AFA, respectively, such that the minimal AFA for KL requires 2™ + n + 1 states. This
proves that the upper bound 2™ +n + 1 from [3] is tight, and solves the open problem stated in Theorem 9.3 of
[3]. We also proved that this upper bound cannot be met by unary AFA languages, where we get upper bound
m +n + 1 and lower bound m +n — 1.
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We examine the descriptional complexity of the forever operator, which assigns the

language 2*L to a regular language L, and we investigate the trade-offs between var-
ious models of finite automata. We consider complete and partial deterministic finite
automata, nondeterministic finite automata with single or multiple initial states, alter-
nating, and Boolean finite automata. We assume that the argument and the result of
this operation are accepted by automata belonging to one of these six models. We inves-
tigate all possible trade-offs and provide a tight upper bound for 32 of 36 of them. The
most interesting result is the trade-off from nondeterministic to deterministic automata
given by the Dedekind number M(n — 1). We also prove that the nondeterministic state

complexity of *L is 2”~! which solves an open problem stated by Birget [The state

complexity of £*L and its connection with temporal logic, Inform. Process. Lett. 58
(1996) 185-188].

Keywords: Regular languages; forever operator; deterministic automata; nondeterminis-
tic automata; Boolean automata; minimal automata; trade-off.

1. Introduction

Formal languages may be recognized by several kinds of formal systems. Different
classes of formal systems can be compared either from the point of view of their com-
putational power, or from the descriptional complexity point of view. As for com-
putational power, for example, deterministic and nondeterministic finite automata
recognize the same class of languages, while the class of languages recognized by
deterministic pushdown automata is strictly included in the class of languages rec-
ognized by nondeterministic ones. However, from the descriptional complexity point
of view, there is an exponential gap between the cost of description of regular lan-
guages by deterministic and nondeterministic finite automata [14, 16-18, 20].
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Descriptional complexity, which measures the cost of description of languages by
different formal systems, was deeply investigated in last three decades [1, 7, 15, 22]
mostly in the class of regular languages. Several kinds of finite automata were
proposed and the trade-offs between the costs of description in different classes
of automata were examined. Let us mention at least the exact trade-off (anl) for
the conversion of two-way nondeterministic automata to one-way nondeterministic
automata [12], and the exact trade-off for the conversion of self-verifying automata
to deterministic automata given by the function that counts the maximal number
of maximal cliques in a graph with n vertices [11].

In 1996, Jean-Camille Birget [2] answered the following question of Jean-Eric
Pin. Let L be a regular language over an alphabet ¥ recognized by a nondeter-
ministic finite automaton (NFA) or a deterministic finite automaton (DFA) with n
states. How many states are sufficient and necessary in the worst case for an NFA
(DFA) to recognize the language ¥*L? The notation L stands for the complement
of L. Birget provided the exact trade-off from DFAs to NFAs, and lower and upper

bounds for the nondeterministic state complexity of >* L.

The motivation of Pin’s question came from the word model of Propositional
Temporal Logic [5]. The set of all models of a formula ¢ over a fixed alphabet
Y is a formal language L(p) over ¥ which has the non-trivial property of being
regular and aperiodic. Some of the temporal operators used in this logic are o
(“next”) and ¢ (“eventually”, or “at some moment in the future”); there are also
the usual Boolean operations —, A, V. A natural dual to the “eventually” operator
is the “forever” (or, “always in the future”) operator [, defined to be — ¢ — (“not

eventually not”). Formulas and their models are related as follows: L(p) = L(yp),
L(pAp) = L(e)NL(Y), L{pVih) = L(p)UL(Y), L(ow) = EL(¢), L(op) = X*L(p).

Thus L(Oyp) = L(¢p) = X*L. Hence in [2], Birget studied the state complexity of
the “forever” operator.

Here we continue this research by investigating the complexity of the forever
operator for different models of finite automata. We consider complete and partial
deterministic finite automata, nondeterministic automata with a single or multiple
initial states, and Boolean automata with a single initial state, called alternating
finite automata in [2, 6], or with an initial function [4]. Similarly as Jean-Eric Pin, we
ask the following question: If a language L is represented by an n-state automaton

of some model, how many states are sufficient and necessary in the worst case for

an automaton of some other model to accept X*L?

We study all the possible 36 trade-offs, and except for four cases, we always
get tight upper bounds. In particular, we are able to prove that the upper bound
on the nondeterministic state complexity of ¥*L is 2"~!. This improves Birget’s
upper bound 2"*! 4+ 1 and meets his lower bound for DFA-to-NFA trade-off. The
most interesting result of this paper is the tight upper bound for the NFA-to-DFA
trade-off given by the Dedekind number M(n —1); recall that the Dedekind number
M(n) counts the number of antichains of subsets of an n-element set.
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2. Preliminaries

Let ¥ be a finite alphabet of symbols. Then ¥* denotes the set of strings over X
including the empty string €. A language is any subset of ¥*. For a language L, the
complement of L is the language L = ¥*\ L. The concatenation of languages K and
L is the language KL = {uv |u € K and v € L}. The cardinality of a finite set A is
denoted by |A|, and its power-set by 24. By logn, we denote the binary logarithm
of the number n. For details, we refer to [19, 21].

A nondeterministic finite automaton with multiple initial states (NNFA) is a
5-tuple A = (Q, X, 0,1, F), where @ is a finite set of states, ¥ is a finite non-empty
alphabet, o : Q x ¥ — 29 is the transition function which is naturally extended to
the domain 29 x ¥*, I C @ is the set of initial states, and F C @ is the set of final
states. The language accepted by A is L(A) ={w € ¥* | TowNF # 0}. If |I| > 2,
we say that A is a nondeterministic finite automaton with nondeterministic choice
of initial state (so we use the abbreviation NNFA, cf. [21]). Otherwise, if |[I| = 1, we
say that A is a nondeterministic finite automaton (NFA). Then, if I = {s}, we write
A=(Q,%,0,s, F) instead of A = (Q,%,0,{s}, F). In an e-NFA, we also allow the
transitions on the empty string. It is known that the e-transitions can be removed
without increasing the number of states in the resulting NFA [21, Theorem 2.3].

An NFA A is a (complete) deterministic finite automaton (DFA) if |[goa| =1
for each ¢ in @ and each a in X. Next, A is a partial deterministic finite automaton
(pDFA) if |goa| < 1 for each ¢ in @ and each a in 3. We write p o a = ¢ in such
cases. For DFAs, we use - to denote the transition function that maps @ x X to Q.

We call a state of an NNFA sink state if it has a loop on every input symbol.
From every final sink state, every string is accepted, but from every non-final sink
state in a DFA, no string is accepted. Notice that every minimal pDFA has no
non-final sink states, and every minimal DFA has at most one non-final sink state.

For a symbol a and states p and ¢, we say that (p,a,q) is a transition in the
NNFA A if g € p-a, and for a string w, we write p — ¢ if ¢ € p-w. We also say that
the state ¢ has an in-transition on a, and the state p has an out-transition on a.

To omit a state ¢ of a DFA means to remove it from the state set and to remove
also all its in-transitions and out-transitions. To replace the state g with a sink state
means to remove each of its out-transitions and add a loop (q, a, q) for each a.

The reverse of a string is defined as e = ¢ and (wa)® = aw’ for each symbol
a and string w. The reverse of a language L is the language L¥ = {w!|w € L}.
The reverse of an NNFA A = (Q,%,-,I,F) is an NNFA A% obtained from A by
reversing all the transitions and by swapping the roles of initial and final states.
The NNFA A% recognizes the reverse of L(A).

Every NNFA A = (Q, X, -, I, F) can be converted to an equivalent DFA D(A) =
(29,5, I, F') where F' = {S € 29 | SN F # (}. We call the DFA D(A) the subset
automaton of the NNFA A. We use the following proposition to prove reachability
of states in a subset automaton in some cases.
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a,b b
a a,b a,b @i a a
a

Fig. 1. The NFAs used in Proposition 1.

Proposition 1. In the subset automaton of the NFA shown in Fig. 1(left), each
subset containing 0 is reachable from {0}, and in the subset automaton of the NFA
shown in Fig. 1(right), each subset is reachable from {0,1,...,n —1}.

Proof. The proof of case (1) is by induction on the size of subsets. The subset {0}
is the initial subset. Each subset {0,41,142,...,%x} of size k+ 1, where 1 <k <n-—1
and 1 <y < iy < -+ < iy, is reached from the subset {0,i2 —i1,..., 4, — i1} of size
k by the string ab’* ~!. Notice that the proof works for arbitrary transitions on a, b
in the state n — 1. The proof of case (2) is also by induction on the size of subsets.
The set {0,1,...,n—1} of size n is the basis. Each subset S with ¢ ¢ S of size k—1,
where 1 < k < n, is reachable from the subset S U {t} of size k by a" 'ba’. O

To prove distinguishability, we use the following notions and observations.
A state g of an NFA A = (Q, %, -, s, F) is called uniquely distinguishable (cf. [3]) if
there is a string w which is accepted by A from and only from the state ¢. A transi-
tion (p, a, q) in the NFA A is called a unique in-transition if there is no state r of A
such that r # p and (r, a, q) is a transition in A. A state ¢ is uniquely reachable from
a state p, if there is a sequence of unique in-transitions (p;_1,a;,p;) (1 < i < k)
such that pg = p and p, = q.

Proposition 2 (cf. [3, Propositions 14 and 15]). Let A be an NFA and D(A)
be the subset automaton of A.

(a) If two subsets of the state set of A differ in a uniquely distinguishable state,
then the two subsets are distinguishable in D(A).

(b) If a uniquely distinguishable state q is uniquely reachable from a state p, then
the state p is uniquely distinguishable as well.

(c) If there is a uniquely distinguishable state of an NFA A that is uniquely reachable
from any other state of A, then every state of A is uniquely distinguishable.

(d) If every state of A is uniquely distinguishable, then the subset automaton D(A)
does not have equivalent states.

A set of pairs of strings {(x1,vy1), (z2,92),..., (ZTn,yn)} is called a fooling set
for a language L if for all 4,5 in {1,2,...,n}, we have z;y; € L, and if ¢ # j,
then z;y; ¢ L or z;y; ¢ L. It is well-known [1, 8] that the size of a fooling set
for L provides a lower bound on the number of states in any NNFA accepting the
language L.
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Fig. 2. The NFA for L such that every NFA for L has at least m + 1 states and every DFA for
L% has at least 2™ states.

For NFAs, the following lemma from [10] is useful; notice that A and B in
[10, Lemma 4] must be disjoint.

Lemma 3 (cf. [10, Lemma 4]). Let A and B be disjoint sets of pairs of strings
and let w and v be two strings such that AU B, AU{(e,u)}, and BU {(e,v)} are
fooling sets for a language L. Then every NFA for L has at least |A|+|B|+1 states.

The next result is used later in our paper.

Proposition 4. Let L be the language accepted by the NFA shown in Fig. 2. Then

(a) every NFA for LT has at least m + 1 states, and
(b) every DFA for LT has at least 2™ states.

Proof. We reverse the NFA in Fig. 2 to get the NNFA N for L%.

(a) Let
A= {((ba)" 7", (ba)") [0 < i < m — 2},
B = {(b,a(ba)™?)},
u = a(ba)™ 2%, and

The reader may verify that AU B, AU{(g,u)}, and BU{(g,v)} are fooling sets for
the language L. By Lemma 3, every NFA for L needs at least m + 1 states.

(b) By Proposition 1, the subset automaton D(N) has 2™ reachable states. To prove
distinguishability, notice that the state 0 is uniquely distinguishable in N by ¢, and
it is uniquely reachable from any other state of N through unique in-transitions
on symbol a. By Proposition 2(c-d), the subset automaton D(N) does not have
equivalent states. O

A Boolean finite automaton (BFA, cf. [4]) is a quintuple A = (Q, %, 0, gs, F),
where @ is a finite non-empty set of states such that @ = {¢1,...,¢n}, ¥ is an input
alphabet, § is the transition function that maps @ x ¥ into the set B,, of Boolean
functions with variables {¢1,...,¢n}, gs € By is the initial Boolean function, and
F C @ is the set of final states. The transition function ¢ is extended to the domain
B, x ¥* as follows: For all g in B,,, a in ¥, and w in ¥*, we have §(g,e) = g; if

g = 9(q1,-..,qn), then 6(g,a) = g(d(q1,a),...,6(qn,a)); (g, wa) = 6(6(g,w),a).
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Next, let f = (f1,..., fn) be the Boolean vector with f; = 1iff ¢; € F'. The language
accepted by the BFA A is the set of strings L(A) = {w € ¥*|(gs, w)(f) = 1}. A
Boolean finite automaton is called alternating (AFA, cf. [6]) if the initial function
is a projection g(q1,...,qn) = ¢;-

We use the following observations for trade-offs between various automata
throughout this paper. We use the claim in Lemma 5(a) quite often in the paper
without referring to Lemma 5(a) again and again.

Lemma 5 (Properties of Finite Automata). Let L be a reqular language.

(a) The language L is accepted by an n-state BFA (AFA) if and only if L? is
accepted by a DFA of 2™ states (of which 2"~ are final, in case of an AFA).

(b) Let L® be a regular language accepted by a minimal n-state DFA. Then every
BFA for L has at least [logn] states.

(c) If the minimal DFA for LY has more than 2"~ final states, then every AFA
for L has at least n + 1 states.

(d) Let L be unary. Then L is accepted by an n-state BFA (AFA) if and only if L
is accepted by a DFA of 2" states (of which 2"~' are final).

(e) If L is accepted by an n-state BFA (AFA), then L is accepted by an n-state
BFA (AFA, respectively).

(f) If L is accepted by an n-state BFA, then L is accepted by an AFA of at most
n + 1 states, and by an NNFA of at most 2™ states.

(g) If L is accepted by an n-state NNFA, then L is accepted by an NFA of at most
n + 1 states and by a pDFA of at most 2™ — 1 states. If L is accepted by an
n-state pDFA, then L is accepted by a DFA of at most n + 1 states.

Proof. (a) (= cf. [6, Theorem 4.1, Corollary 4.2] and [9, Lemma 1]).
Let A= ({q1,92,---,qn},%,0,9s, F') be an n-state BFA for L. Construct a 2"-
state NFA A" = ({0,1}",%,¢",S,{f}), where

e for every u = (uj...,u,) € {0,1}" and every a € 3,

0 (uya) = {u € {0,1}"]6(qi,a) (') =wu; for i =1,...,n};
o S={(b1,...,by) €{0,1}"|gs(b1,...,by) =1};
o f=(f1,...,fn) €{0,1}" with f; =1iff ¢; € F.

Then L(A) = L(A’) and (A’)% is deterministic. Moreover if A is an AFA then A’
has 27! initial states. It follows that L is accepted by a DFA with 2" states, of
which 27~ are final if A is an AFA.

(< cf. [9, Lemma 2]) Consider 2"-state NFA A% for L which has exactly one
final state and the set of initial states S (and |S| = 2"71). Let the state set Q of A®
be {0,1,...,2" — 1} with final state k and the initial set S (S = {2"~! ... 2" —1}).
Let & be the transition function of A%. Moreover, for every a € ¥ and for every
i € @, there is exactly one state j such that j goes to i on a in AT. For a state
i € Q, let bin(i) = (by,...,b,) be the binary n-tuple such that b1bs---b, is the
binary notation of ¢ on n digits with leading zeros if necessary.
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Let us define an n-state BFA A’ = (Q’, 3,0, g5, F'), where Q" = {q1,...,qn},
F' = {q/|bin(k), = 1}, and gs(bin(i)) = 1 iff i € S (g5 = q1). We define ¢’ to
satisfy the condition: for each i in Q and a in X, (§'(q1,a),...,8 (qn,a))(bin(i)) =
bin(j) where i € 6(j,a). Then L(A") = L(AR).

(b)—(d) These are corollaries of case (a).

(e) Let L be accepted by an n-state BFA (AFA). Then, by (a), the language L
is accepted by a DFA of 2" states (of which 2”1 are final). Then the complement
LE is also accepted by a DFA of 2" states (of which 27~ are final). Since L = ZR,
the claim follows again by (a).

(f) Let L be accepted by an n-state BFA. Then L% is accepted by a DFA of
2" states by (a). Add some unreachable final and non-final sink states to get an
equivalent DFA of 2"*! states of which 2" are final. Then, by (a), L is accepted
by an (n + 1)-state AFA. By reversing the 2"-state DFA for LT, we get a 2"-state
NNFA for L.

(g) These claims are well-known. O

If u, v, and w are strings over ¥ such that w = uv, then u is a prefiz of w and
v is a suffiz of w. A language L is prefiz-closed (suffiz-closed) if w € L implies that
every prefix (suffix) of w is in L.

In 1996, Birget [2] studied the state complexity of the “forever” operator YL
on DFAs and NFAs. Here we continue this research and to simplify the exposition,
we use the following notation:

=

fo=x (1)

3. Descriptional Complexity of the Forever Operator

We start with an investigation of some properties of the “forever” operator.

Lemma 6 (Properties of ©*L). Let L be a regular language and f; = L*L.
Then

(a) fr ={w € L|every suffiz of w is in L};

(b) fr =0 if and only if ¢ & L;

(¢) fr =L if and only if L is suffiz-closed.

(d) If LT is accepted by a DFA A, then f& is accepted by a DFA obtained from
A by replacing each non-final state of A with a non-final sink state and by a
pDFA obtained from A by omitting each non-final state of A.

Proof. The claim (a) follows directly from the definition of f, and (b) and (c)
follow directly from (a).

(d) We have fF = LEY*. To get a DFA for LR, we interchange final and non-
final states in A. Then, to get a DFA for LEY* | we replace all the out-transitions
in every final state with loops on every input symbol. Finally, to get a DFA for fZ,
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we again interchange final and non-final states. Now, all non-final states are sink
states. We can omit all of them to get a pDFA for 5. O

In what follows we consider six models of finite automata: DFAs, pDFAs, NFAs,
NNFAs, AFAs, and BFAs. We try to answer the following question. If a language
L is represented by an n-state automaton of some model, how many states are
sufficient and necessary in the worst case for an automaton of some other model
to accept the language f; = X*L? We first consider upper bounds. Although we

have 36 possible trade-offs, it is enough to prove only some of them. The remaining
trade-offs follow either from inclusions of some models of finite automata or from
Lemma 5. For the (N)NFA-to-(p)DFA trade-offs, we need the Dedekind number
M(n) which counts the number of antichains of subsets of an n-element set. The
number M(n) lies in the order of magnitude 22°™ [13]:

o () s (1) (0 () v

It follows that log M(n) lies in the order of magnitude 27~190oe™) Moreover, we
assume that ¢ € L and L # ¥* in the statement of the next theorem because
otherwise fr, is empty or equals ¥* by Lemma 6(b) and (c).

Theorem 7 (Upper Bounds). Let n > 3 and f, = X*L. Let L be a regular
language such that € € L and L # ¥*. Let L be accepted by a finite automaton A
of n states.

(1) If A is a DFA, then fr is accepted by a DFA of at most 2"~ states.
(2) If A is a pDFA, then fr, is accepted by a pDFA of at most 2"~ 1 states.
(3) If A is an NFA| then f, is accepted by

(a) an NFA of at most 2"~ ! states;
(b) a pDFA of at most M(n — 1) — 1 states.

(4) If A is an NNFA, then fr, is accepted by

(a) an NNFA of at most 2" — 2 states.
(b) a pDFA of at most M(n) — 1 states.

(5) If A is an AFA, then f1, is accepted by

(a) an AFA of at most n states;
(b) an NNFA of at most 21 states.

(6) If A is a BFA, then fr, is accepted by

(a) a BFA of at most n states;
(b) an NNFA of at most 2™ — 1 states.

Proof. (1) We provide a simple alternative proof to [2, Theorem 1(b)]. We first
interchange final and non-final states in A to get the DFA A for L. Then we add
a loop on every input symbol in the initial state of A to get an NFA N for ¥*L.
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In D(N), only subsets containing the initial state are reachable. Finally, we again
interchange the final and non-final states of D(N).

(2) Let A= (Q,%,, s, F) be an n-state pDFA for L. It is enough to show that
the language Y*L is accepted by a DFA of at most 2"~ + 1 states, one of which is
final sink state. To get an (n + 1)-state DFA A for L, we first add a new non-final
sink state gq to A. Then, for each transition which is undefined in A, we add the
corresponding transition to g4. Finally, we interchange final and non-final states of
the resulting automaton. We construct an (n + 1)-state NFA N for ¥* L from DFA
A, by adding a loop on each input symbol in the initial state s. In the corresponding
subset automaton, each reachable subset must contain s. Moreover, the state g4 is
a final sink state. It follows that each string is accepted by N from ¢4, and therefore
each subset containing qqg, is equivalent to {gq}. In total, we get at most 2"~ + 1
reachable and pairwise distinguishable states.

(3a) Let A = (Q,%,-, s, F) be an n-state NFA for L. We reverse A to get an
n-state NNFA A for L® with a unique final state s. In the corresponding subset
automaton D(AF), using Lemma 6(d), we omit all the non-final subsets, that is, all
subsets not containing s, to get a 2" l-state pDFA B for fZ. We have two cases.
If there is a final subset which is not reachable in B, then we reverse B and add a
new initial state to get an NFA for f1, of at most 2”~! states. Otherwise, each final
subset, that is, each subset containing s is reachable in B. We show that if a string w
is accepted by B from the state {s}, then w is accepted by B from any other state.
The claim holds for w = ¢ since all states of B are final. Let w = ajas - - - a, where
a; € X, be accepted by B from {s}. Then in B, we have the following computation:

(s} 25 6 26, 2 ... 2 6,

where s € S; since each state of B contains s. Notice that any other state S of B
is a superset of {s}. Recall that B is derived from the subset automaton D(AF) in
which we must have

/ as

O T T (2)

for some sets S7,.55,...,S) such that S; C S} (1 < ¢ < k). Since each S; contains
s, each S must contain s as well. It follows that (2) is a computation in B, so w is
accepted by B from S; notice that each set S; is reachable in B.

We modify pDFA B as follows. We make all states of B non-final, except for
{s}. Next, we add the e-transition to {s} from any other state in B. Denote the
resulting NFA by B’. Then L(B) C L(B’). Let us show that L(B’) C L(B). Let w
be accepted by B’. If w = ¢, then w € L(B). Otherwise w can be partitioned as
w = wiws - -+ wy and in B’ we have the following computation on w:

F&Sli){s}&&%{s}&---@{s}%sk

in which while reading each w; no added e-transition is used, so {s} — S; is a

computation in B. As shown above, each w; is accepted by B from each state of B. It
;w3

follows that in B we have an accepting computation F —» S; —2» e R SN S
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for some states S5, ..., S; of B. Hence w is accepted by B, so L(B’) C L(B). This
means that B’ is a 2" !-state NFA with one final state for ff. By reversing B’ and
removing e-transitions, we get a 2" !-state NFA for fr.

(3b) It is enough to show that ¥*L is accepted by a DFA of at most M(n — 1)
states, one of which is a final sink state. Let A = (@, 3, -, s, F') be an n-state NFA
for L, and B be the 2"-state subset automaton of A. We interchange the final and
non-final states in B, to get a 2"-state DFA B for L. To get a 2"-state NFA N for
¥*L, we add a loop on each input symbol in the initial state of the DFA B. Finally,
let C be the subset automaton of N. Then C is a DFA for ¥* L. Formally, we have

B =D(A) = (29,%,-,{s}, Fg) where Fg = {X CQ | X N F # 0});

B =(29,%,-,{s}, F5) where Fz = 29\Fp = {X C Q| X C Q\F});

N = (29,%,0,{s}, F5) where for each X € 2 and each a in %,
{s}oa={{s},{s} -a} and X oca={X-a} if X # {s};

C =D(N) = (22°,%,0,{{s}}, Fc) where Fo = {X € 2*° | X N Fg # 0}.

Thus, the states of C' are sets of subsets of ), and a state S = {S1,S2,...,Sk} is
final if there is an ¢ such that S; C Q\F. Our aim is to show that C' has at most
M(n — 1) reachable and pairwise distinguishable states. We first show that each
state of C' is equivalent to an antichain in 2.

Let S C T C @ and w be accepted by N from the state T. Let us show that
w is accepted by N also from the state S. If w is accepted from T', then there is a
computation in N on w starting in 7" and ending in a final state 77 of N. If this
computation does not use any transition which was added to get N from B, then
we have the same computation in B. This means that T - w C Q\F, and since
B is the subset automaton of A, we have S-w C T -w C Q\F. Therefore w is
accepted by B from S. Since in N we have the same computation from S on w, the
string w is accepted by N from S. Now assume that w is accepted by N from T' by
a computation using an added transition. Then w can be partitioned as w = wuw,
where T {s} = T" and T’ C Q\F, and moreover, while reading u, no added
transition is used. It follows that in B, we have T - u = {s}, and therefore also
S-uC{s}. If S-u=70, then S-w = (), and therefore also S ow = ), so w is
accepted by N from S. If S -u = {s}, then in N we have S = {s} = T”, which
means that w is accepted by N from S.

Thus if in a state S = {51, 52,..., Sk} of C' we have S; C S; for some ¢ and j,
then S is equivalent to S\{S;}. It follows that each state of C' is equivalent to an
antichain in 2¢. Moreover, since N has a loop on each symbol in its initial state
{s}, and C is the subset automaton of NV, each reachable state of C' must contain
the set {s}, that is, each reachable antichain has a form {{s}, S2, Ss,..., Sk}, where
k> 1, and {S,Ss,...,S;} is an antichain in 2@\{*}. This gives the upper bound
M(n — 1). Notice that the empty antichain corresponds to the initial state {{s}}.
We also have to count the antichain {(} which is an unreachable final sink state,
but it is equivalent to the reachable state {{s}, 0}.
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(4a) If all states of a given NNFA are initial, then L is suffix-closed and f; =
L by Lemma 6(c). Otherwise, LT is accepted by an 2"-state DFA which has at
least two non-final states. Omit all the non-final states to get a pDFA for f (cf.
Lemma 6(3b)), and reverse the resulting pDFA to get the desired NNFA for fr.

(4b) It is enough to show that ¥*L is accepted by a DFA of at most M(n) states,
one of which is a final sink state. Let A = (@, %, -, I, F') be an n-state NNFA for L,
and B be the 2"-state subset automaton of A. In the same way as in the case (3b),

B=D(A) = (29,%,-, I, Fp) where Fg = {X C Q| X NF # 0});

B =(29%,-,I,F5) where Fiz =29\Fp = {X CQ|X C Q\F});

N = (29,%,0,1, Fg) where for each X € 2@ and each a in X,
IToa={l,I-a}, and Xoa={X-a}if X # I,

C =D(N) = (22°,%,0,{I}, Fc) where Fo = {X € 2*° | X N Fj # 0}.

The states of C' are sets of subsets of @, and a state S = {S1,55,...,Sk} is final
if there is an ¢ such that S; C Q\F. Our aim is to show that C has at most M(n)
reachable and pairwise distinguishable states. We first show that each state of C'is
equivalent to an antichain in 29. Let S C T C Q. We show that the state {I, 5,7}
is equivalent to {I, S} in C. To this aim, let w be accepted by N from T. If no
added transition is used in this computation, then similarly as in the case (3b), w
is accepted by C from S. Otherwise w = uv where T = I % T’ with T' C Q\F.
Since the state I has a loop on each symbol, in C' we have I < I = T”, so the string
w is accepted by C from I. It follows that the state {I,S,T} is equivalent to {I, S}
in C. Thus if in a state S = {51, 52, ..., Sk} of C we have S; C S; for some ¢ and j,
then S is equivalent to S\{S;}. It follows that each state of C' is equivalent to an
antichain in 29. Since the number of antichains in 2% is M(n), and the reachable
state {I,(} is equivalent to the unreachable antichain {0}.

(5a) If L is accepted by an n-state AFA, then L% is accepted by a DFA of 2"
states of which 27~! are final. Replace each non-final state with a non-final sink
state to get a DFA for f of 2" states of which 2771 are final. Hence f7, is accepted
by an n-state AFA.

(5b) In the DFA for fZ obtained as in case (5a), we omit the non-final sink
states to get an equivalent pDFA of 2"~! states. By reversing this pDFA, we get a
27~ 1_state NNFA for fr.

(6a) If A is an n-state BFA, then L is accepted by a DFA of 2" states. Replace
each non-final state with a non-final sink state to get a DFA for f of 2" states
given by Lemma 5(f). Hence fr, is accepted by an n-state BFA.

(6b) In the DFA for fI' obtained as in case (6a), we omit the non-final sink
states to get an equivalent pDFA of at most 2" — 1 states; recall that L # ¥*. By
reversing this pDFA, we get the desired NNFA for fy. O

Now we turn our attention to lower bounds. We again need to prove only some
of them. All the remaining bounds follow from the inclusions of models or from
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Lemma 5. However, in some cases, we use witnesses over a smaller alphabet for the
bound that follows from some other trade-off. In 32 of 36 cases, our lower bounds
meet the upper bounds given by Theorem 7. The remaining four cases are the
trade-offs from NNFA to DFA, pDFA, NFA, and NNFA. Except for four trade-offs,
our witnesses are defined over a fixed alphabet of size one, two, three, or four. The
binary case is always optimal in the sense that there is no unary witness language.

Theorem 8 (Lower Bounds). Let n > 3 and fr, = X*L. There exists a regular
language L accepted by an n-state finite automaton A such that A is

1) a ternary DFA and every BFA for fr has at least n states;
a ternary DFA and every NNFA for f1 has at least 27! states;

)
)
) a binary pDFA and every BFA for f1, has at least n states;

5) a quaternary pDFA and every DFA for fr has at least 2"~ 1 + 1 states;
) an NFA and every DFA for fr, has at least M(n — 1) states;

) a binary NNFA and every AFA for fr, has at least n + 1 states;

) a unary AFA and

(a) every BFA for fr has at least n states;
(b) every NNFA for fr has at least 2"~ states;

(9) a binary AFA and

(a) every NFA for fr has at least 2"~ ! + 1 states;
(b) every DFA for fr, has at least 22" " states;

(10) a unary BFA and

(a) every AFA for fr has at least n + 1 states;
(b) every NNFA for fr has at least 2™ — 1 states;

(11) a binary BFA and

(a) every NFA for fr has at least 2" states;
(b) every DFA for fr has at least 22"~ states.

Proof. (1) Let L be the language accepted by the DFA A shown in Fig. 3. We
reverse A to get an NFA A for L®. In the corresponding subset automaton, all
(final) subsets containing 0 are reachable by Proposition 1, and the empty set is
reached from {0} by c. Notice that no other subset is reachable. Moreover, the
subset automaton does not have equivalent states since the state 0 is uniquely

Fig. 3. The DFA for L such that every BFA for 3*L has n states.
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Fig. 4. The DFA from [2] for L such that every NNFA for * L has 2"~ ! states.

b
ﬁé (D)) Ty
a,b

Fig. 5. The binary DFA for L such that every pDFA for ©*L has 27! states.

distinguishable in A” by ¢, and it is uniquely reachable from any other state of A%

through unique in-transitions 2 b3l 51515 0. Since in the minimal

DFA for L we have all states final but one non-final sink state, the language L
is prefix-closed. Therefore L is suffix-closed, so f;, = L. Since the minimal DFA for
L% has 2"~! + 1 states, every BFA for L, so for fr, has at least n states.

(2) This case follows from [2, Proof of Theorem 2(a)].

(3) Let L be accepted by the n-state DFA A shown in Fig. 5. We construct an n-
state NFA N for ¥* L by interchanging final and non-final states in A and by adding
the transition (0, a,0). It is enough to prove that the subset automaton D(N) has
at least 2"~ ! reachable and pairwise distinguishable states. We prove reachability
by using Proposition 1. To prove distinguishability, notice that the state n — 1 is
uniquely distinguishable by € in IV and it is uniquely reachable from any other state
through unique in-transitions on a. By Proposition 2, the subset automaton D(N)
does not have equivalent states. Since D(IN) has no non-final sink state, it is also a
minimal pDFA. Notice that the lower bound 2"~! for a DFA accepting f;, follows
from the proof. In [2, Proof of Theorem 2(b)], it is claimed that this bound is met
by the complement of binary language a{a,b}" 2. However, the minimal DFA for
this language has n + 1 states.

(4) Let L be the language accepted by the pDFA A shown in Fig. 6. We reverse A
to get an NNFA for L. In the corresponding subset automaton, we replace every
non-final state with a single non-final sink state. By Lemma 6(d), we get a DFA B
for f& with 277! final states. We reach all of them using induction on the size of
subsets. The set {0,1,...,n — 1} of size n is the basis. Each subset S with 0 € S
and t ¢ S of size k — 1, where 1 < k < n, is reachable from the subset SU{t} of size
k by the string a’~'ba™~*. By doing this, we always keep the state 0 in the set since
symbol a performs a loop on state 0 and symbol b moves state 1 to 0. This means
that all sets with 0 are reachable in B through final states. The non-final empty set
is reached from {0} on b. For distinguishability, let S and T be two different subsets
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Fig. 6. The pDFA for L such that every BFA for X*L has n states.

Fig. 7. The pDFA for L such that every DFA for ©*L has 27! 4 1 states.

such that ¢t ¢ S and ¢t € T. Then a'~'b is rejected from S and accepted from 7.
Since a performs a loop on 0 and b moves 1 to 0, we are always in final states. So
we distinguish every pair of 277! final states. By Lemma 5, every BFA for f; has
at least n states.

(5) Let L be the language accepted by the pDFA A shown in Fig. 7. We construct
an (n + 1)-state NFA N for ¥*L as follows. First, we add a new non-final sink
state n and the transitions on a, b, ¢ from n — 1 to n. Then we make state n final,
and all the remaining states non-final. Finally, we add the transitions (0, a,0) and
(0,d,0). By Proposition 1, in the subset automaton D(N), all the subsets containing
0 are reachable from the initial subset {0} via strings over {a,b}. All the subsets
containing n are final and equivalent to {n}. All the remaining subsets are non-final.
Two distinct subsets of {0,1,...,n — 1} differ in a state i, and the string d"~'~%c
distinguishes the two subsets; notice that as for the states in {0,1,...,n — 1},
the string ¢ is accepted only from n — 1, the state n — 1 is uniquely reachable
from any other state through unique in-transitions 0 N 1, and
therefore d"~!~%c is accepted only from the state i. Thus the subset automaton
D(N) has at least 2"~ + 1 reachable and pairwise distinguishable states. It is
claimed in [2, Theorem 1(b)] that the upper bound in this case is 2"~1. The proof
of [2, Theorem 1(b)] does not work in the case of a partial automaton for L since
in such a case we can reach an accepting state in the automaton B also by a string
which is not in fr. Our witness fixes this small inaccuracy.

(6) Let L be accepted by the n-state NFA A = (Q,%,-,0,F), where @ =
{0,1,...,n—1}, ¥ = {ax,bx | X C Q}, F = Q\{n—1}, and the transition function
is defined as follows:

0-ax =X and i-ax = {i} if i #0,

_ {n—1}, ifieX;
Z-bX:
{0}, if i ¢ X;
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bi2,3}

Fig. 8. The example of NFA for L such that every DFA for ¥* L has M(n— 1) states. The alphabet
is {ax,bx | X C @}, only transitions on ayy 3} and by 3y are shown.

see Fig. 8 for an illustration. Then
B =D(4) = (29,5, {0},29\{{n ~ 1},0});
B=(29,%,, (0}, {{n — 1},0));
N = (29,%,0,{0}, {{n — 1},0}) where {0} ca = {0} U {0} -a and
Xoa=X-aif X #{0};
C =D(N) = (22°,%,0, {0V}, {X € 2°° | X N {{n — 1}, 0} # 0}).

Our aim is to show that C has at least M(n — 1) reachable and distinguishable
states. Let S1, 59, ..., Sk be subsets of @) such that 0 ¢ S; for every i. Then in C
we have {{0}} 2% {{0}, S1} =225 {{0}, S1, So} —2 -+ 2255 140}, 54, Ss, ..., Sk}
It follows that every state S = {{0},S1,S52,...,Sk} where {S1,S55,...,5%} is an
antichain of subsets of {1,2,...,n — 1} is reachable. To prove distinguishability, let
S = {{0},51,85:,...,5k} and T = {{0},T1,T5,..., Ty} be two distinct reachable
antichains in C'. Then there exists a subset X of {1,2,...,n— 1} such that, without
loss of generality, X € S\7T. We have two cases. (i) No subset of X is in 7. Then
bx is accepted from S since X € §, X obx = X -bx = {n — 1}, and therefore
{n —1} € Sobx. Hence bx is accepted by C from S. On the other hand, we have
0 € {0} obx. Next, since T (1 < j < /) is not a subset of X, there is a state ¢ such
that ¢ € T;\X. Since i - bx = {0}, we must have 0 € Tj o bx. Hence bx is rejected
by C from 7. (ii) There is a subset Y of X such that Y € 7. Then no subset of
Y is in S since S is an antichain and X € §. By the former case, by is accepted
from T and rejected from S. Thus C has M(n — 1) reachable and distinguishable
states.

(7) Let L be accepted by the NNFA A from Fig. 9. Since each state of A is
initial, L is suffix-closed, so f;, = L. To show that every AFA for f;, so for L, has
n + 1 states, it is enough to show that the minimal DFA for L has more than
27~ final states. Since the reverse of A is isomorphic to A, we have L = L. In
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Fig. 9. The NNFA for L such that every AFA for *L has n + 1 states.

the subset automaton D(A), the initial subset is {0, 1,...,n—1}. By Proposition 1,
every subset is reachable in D(A). Next, the state 0 is uniquely distinguishable in A
by the string (ab)”~!, and it is uniquely reachable from any other state of A. Thus
D(A) is minimal. Since D(A) has 2" — 1 final states, every AFA for L, so for fr,
has at least n 4 1 states.

(8) Let L = {a*|0 <i < 2" ! —1}. Then L is a unary language accepted by a
2"-state DFA with 27! final states. So L is accepted by an n-state AFA. Since L
is suffix-closed, fr, = L. (a) Since the minimal DFA for L has 2”1 + 1 states, every
BFA for L has at least n states. (b) The longest string in L is of length 27! — 1,
and therefore every NNFA for L has at least 27! states.

(9) Set m = 2"~! in Fig. 2. Let K be accepted by the 2"-state DFA A in which
the transitions on final states 0,1,...,2" ! — 1 are shown in Fig. 2. Moreover, A
has 2"~! non-final sink states. Set L = K. Then L is accepted by an n-state AFA.
By Lemma 6(d), if we omit all non-final states of A, we get a pDFA for fZ. By
Proposition 4, we get that (a) every NFA for fr has at least 277! + 1 states, and
(b) every DFA for f; has 22" states.

(10) Let L = {a’|0 < i < 2" — 2}. Then L is a unary language accepted by
a minimal 2"-state DFA A, so L is accepted by an n-state BFA. Since L is suffix-
closed, fr = L. (a) Every AFA accepting L has at least n + 1 states since the
number of final states in A is greater than 2"~1. (b) The longest string in L is of
length 2™ — 2, and therefore every NNFA for L has at least 2™ — 1 states.

(11) Set m = 2™ — 1 in Fig. 2. Now the proof goes exactly the same way as in
case (9). It results in the lower bound 2" for NFAs and 22" ~! for DFAs. O

The upper and lower bounds from Theorems 7 and 8 are shown in Table 1 as
circled. If an upper or lower bound in one cell follows from the bound in another
cell, this is denoted by an arrow. Another witness for the same lower bound, but
using a smaller alphabet, is circled dashed. As a corollary, we get the results that are
displayed in Table 2. The table also shows the size of alphabets used for describing
witness languages.

Table 3 shows the upper bounds on the complexity of the forever operator on
unary regular languages; here F(n) denotes the Landau function defined as F(n) =
max{lem(zq,...,zx)|n = 21 + -+ + z}. In six cases, namely {AFA, BFA}-to-
{NNFA, AFA, BFA}, the upper bounds are the same as for general languages and
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Table 2. The complexity of £* L for various types of finite automata. The DFA-NFA and DFA-N-
NFA trade-offs are from [2].

L\X*L | DFA |~| | pDFA || | NFA |Z| | NNFA |3| | AFA|Z| | BFA
DFA | 271 2 | 2n—t 2 |21 3| 2nl 3 |n 3| n 3
pDFA | 27— 1 41 4 | 271 2 |21 3|21 3 |n 2| n 2
NFA | M(n—1) 27+t | M(n—1)—1 2ntlt | 2n=l 3 | on-1 3 | p 2 | n 2
NNFA | > M(n—1)2"+! | > M(n—1)—127+! | >2n=1 3 | >2n=1 3 | n4+12 | n 2
< M(n) < M(n) -1 <2n—1 <2n—2

AFA | 22" 2| 22" 1 2| 2n1412 |27 1 |n 1 |mn 1
BFA | 22"-1 2 | 22"-1_1 2 | 2n 2127 —-1 1 |n+11|n 1

Table 3. The upper bounds on the complexity of forever operator in the unary case.
We have D(n) = F(n — 1) 4 n? — 2 € 20(vn1ogn) and [log(D(n))] < n.

I\X*L DFA pDFA NFA NNFA AFA BFA
DFA n n—1 n—1 n—1 [logn] + 1 [logn]
pDFA n+1 n n n [logn] + 1 [log(n+1)]
NFA | D(m) | D(m) | D(m) | D(n) | Nog(D(m)]+1 | Nog(D(n))]
NNFA | D(n) | D(m) | D(n) | D(n) | log(D(m)]+1 | Nlog(D(m)]
AFA | 2n=l41 | 2n—d A 2n—1 n n
BFA 2n 2n—-1 | 2"—-1 | 2" -1 n+1 n

they are met by unary witnesses. In the remaining cases, the upper bounds are
smaller than those in the general case. It follows that a binary alphabet is optimal
whenever it is used to describe witnesses in the general case.

4. Conclusions

We investigated the descriptional complexity of X*L over complete and partial
deterministic, nondeterministic, alternating, and Boolean finite automata. For each
trade-off, except for those starting with NNFAs, we provided tight upper bounds
for complexity of ¥*L depending on the complexity of L. The most interesting
result is the tight upper bound on NFA-to-DFA trade-off given by the Dedekind
number M(n — 1). However, we used a growing alphabet of size 2"*! to get the
lower bound in this case. Except for (N)NFA-to-(p)DFA trade-offs, all witnesses are
described over an alphabet of fixed size. Moreover, binary and unary alphabets are
optimal for their respective cases. Whenever we have a larger alphabet, we do not
know whether or not it is optimal. The precise complexity for NNFA-to-(p)DFA
and NNFA-to-(N)NFA trade-offs remains open as well.
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