
COMENIUS UNIVERSITY IN BRATISLAVA

FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

Multivalued Integral Manifolds in Banach Spaces
and the Numerical Poincaré Map

Dissertation thesis

2013 Mgr. Sándor Kelemen



COMENIUS UNIVERSITY IN BRATISLAVA

FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

Multivalued Integral Manifolds in Banach Spaces
and the Numerical Poincaré Map

Dissertation thesis

Mgr. Sándor Kelemen

Study programme: Applied Mathematics
(Single degree study, Ph.D. III. deg., full time form)

Field of Study: 9.1.9 applied mathematics
External Educational Institute: Mathematical Institute, Slovak Academy of Sciences
Tutor: prof. RNDr. Michal Fečkan, DrSc.
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Abstract

In the first part of the thesis we consider a differential inclusion

ẋ ∈ A(t)x+ f(t, x) + g(t, x,X1)

in a Banach space X with a general exponential dichotomy, where X1 is the closed
unit ball of X. The right-hand side is strongly measurable in the time variable and
Lipschitz continuous in the others. We prove the existence and uniqueness of qua-
sibunded solutions corresponding to suitable selectors. Analogues of stable and
unstable manifolds are introduced and a graph characterization is given. We show
some deeper properties of these multivalued manifolds concerning their hierarchy
and independence on a special parameter. These kinds of inclusions model among
others the effect of roundoff error in the numerical analysis of dynamical systems.
The first chapter is closed with various sufficient criteria for exponential dichotomy.

The next chapter is devoted to the analytical study of the relationship between
the Poincaré map and its one step discretization. Error estimates are established de-
pending basically on the right-hand side function of the investigated ODE and the
given numerical scheme. Our basic tool in this chapter is a parametric version of
the Newton–Kantorovich method. Applying these results, in the neighborhood of a
non-degenerate periodic solution a new type of step-dependent, closed curve is de-
tected for the discrete dynamics. The discretized Poincaré map is also a preparatory
stage for further investigation of bifurcations of discrete dynamics near periodic so-
lutions.

Key words: multivalued analysis, integral manifolds, exponential dichotomy,
hierarchy, Poincaré map, discrete dynamics
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Abstrakt

V prvej časti dizertačnej práce uvažujeme diferenciálnu inklúziu

ẋ ∈ A(t)x+ f(t, x) + g(t, x,X1)

v Banachovom priestore X so všeobecnou exponenciálnou dichotómiou, kde X1 je
jednotková uzavretá gul’a v X. Pravá strana rovnice je silne meratel’ná v časovej
premennej a lipschitzovsky spojitá v ostatných. V práci je dokázaná existencia a jed-
noznačnost’ kváziohraničených riešení zodpovedajúcich vhodným selektorom. Je
uvedená analógia stabilných a nestabilných variet a je dokázaná ich grafová cha-
rakteristika. Ďalej sú ukázané niektoré hlbšie vlastnosti týchto viacznačných variet,
ich hierarchia a nezávislost’ na špeciálnom parametri. Diferenciálne inklúzie týchto
typov modelujú okrem iného efekt zaokrúhlovacej chyby numerickej analýzy dyna-
mických systémov. Na konci prvej časti sú prezentované rôzne nutné kritériá expo-
nenciálnej dichotómie.

Následná kapitola je venovaná analytickému skúmaniu vzt’ahu medzi Poinca-
rého zobrazením a jeho jednokrokovou diskretizáciou. Chyby odhadov sú dané
v závislosti od pravej strany skúmanej ODR a použitej numerickej schémy. Základ-
ným nástrojom tejto kapitoly bola parametrická verzia Newtonovej–Kantorovičovej
metódy. Aplikáciou týchto výsledkov, v okolí nedegenerovaného periodického rie-
šenia bola objavená nová, krokovo závislá, uzavretá krivka pre diskrétnu dynamiku.
Diskretizované Poincarého zobrazenie je základom d’alšieho skúmania bifurkácií
diskretizovanej dynamiky v okolí periodických riešení.

Kl’účové slová: viacznačná analýza, integrálne variety, exponenciálna dichotó-
mia, hierarchia, Poincarého zobrazenie, diskrétna dynamika
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Preface

The present thesis is the result of my four year long doctoral studies at the Math-
ematical institute of Slovak Academy of Sciences. The thesis is an adaptation and
extension of two papers written under the leadership of my supervisor (c.f. [25, 26]
– the first one was already published, the second one has been submitted and we
have received an affirmative answer recently).

Our objects of studies are the numerical notions in dynamical systems, namely
the inflated dynamics and the numerical Poincaré map. We have chosen this topic
firstly because we hope that the numerical aspects of the “pure” theory of continu-
ous dynamical systems (DS) keep our results closer to some real-word applications.
Secondly we have been highly motivated by the typical question: What properties
of DS persist under the various numerical procedures applied to the continuous DS?
The goal of our thesis is at first to give an adequate description for the analogous of
the stable and unstable manifolds in a multivalued setting for differential inclusions
possessing exponential dichotomy on R. Second, to introduce a numerical Poincaré
map with a rigorous analytical approach.

We hope that our investigations bring some new insights to the perturbations
of continuous DS and also that it might lead to some improvements in the future
regarding the general understanding of numerical procedures.

Our thesis is written on the level of mathematics which is accessible to the reader
having a basic knowledge of mathematical analysis. Rarely occurring advanced to-
pics are everywhere properly explained.

Bratislava, 29th of April, 2013
Sándor Kelemen
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Introduction

As we already mentioned in the Preface, this thesis is a contribution to the present

knowledge of the dynamics of numerical procedures applied to continuous dynami-

cal system (DS). The emphasis is made on two topics discussed in two independent

chapters. Now, we would like to give some brief insights into these topics.

It is well-known that invariant manifolds like stable and unstable ones play an

important role in understanding saddle dynamics for smooth nonlinear DS [3,36,38,

55–57]. To the best of our knowledge, instead, there are only few papers dealing with

saddle dynamics for non-smooth or even multivalued DS. The simplest example of

multivalued DS is the so-called inflated dynamics, which was introduced in [39] and it

was used in a fairly large number of papers since then (for details, see [30]). Chapter

1 is a continuation of [12], and we refer the reader for more results and a discussion

on multivalued hyperbolic dynamics to that paper. Like in [12], our multivalued DS

takes a special form of a parametrized, i.e. controlled form with Lipschitzian nonlin-

earities/multifunctions. In view of a parameterization result by Ornelas [46], this

is not a loss of generality in finite dimensional cases and with convex valued Lips-

chitzian multifunctions. However, in the general case such a parameterization does

not exist, see the Appendix of [12] for a short discussion about the parameterization

problem for multifunctions. Multivalued differential equations are closely related

to numerical procedures and they serve a good model in order to include the step-

to-step error terms to the exact model. Such an errors always occur in numerical

realizations.

In the first chapter we consider parameterized Lipschitzian and Carathéodorian

semi-linear differential inclusions in Banach spaces with exponentially dichotomous

linear parts. Under additional assumptions, we prove the existence and uniqueness

of quasibounded solutions. Then the analogy of the stable and unstable sets corre-
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sponding to these quasibounded solutions are defined and it turns out that they are

the graphs of suitable multifunctions. We also introduce and study solutions corre-

sponding to more general weighted selector spaces. We discuss hierarchy like in [3].

Chapter 1 is concluded with presenting some criteria on the existence of hyperbolic

exponential dichotomy on R. These sufficient conditions are derived for constant

matrices on a finite dimensional Cn, for a class of infinite matrices on complex `p

spaces and finally for some non-autonomous periodic ODE’s also on `p.

After that, Chapter 2 is devoted to the precise analytical derivation of the nu-

merical/discretized Poincaré map of an ordinary differential equation possessing a

periodic orbit. We have been motivated by papers [33, 64], where numerical tools

are used for computing the Poincaré map. There is a vast amount of materials con-

cerning dynamics of numerical approximations of ODE, see for instance [23, 27, 28,

31, 59, 60]. This chapter of the thesis gives a contribution to this direction.

The continuous Poincaré map P for the smooth ODE with a 1-periodic orbit γ

is a well-understood topic and is contained in almost every textbook on continuous

dynamical systems (e.g. [45]). To define the numerical Poincaré map Pm for a dis-

cretized dynamical system obtained from the one-step discretization procedure we

have chosen a method originating in [33]. Here m designate the first natural num-

ber of the whole-step realizations of the discretization scheme such that the next,

m + 1-th realization, exceed the Poincaré section. Our goal is to give a precise an-

alytical meaning of Pm and to establish error bounds for the difference |P − Pm|

and its various differentials. Accuracies are given in a form C
mq

for every m large

enough. Here the constant C essentially depends on the right-hand side of the ODE,

on the particular numerical scheme and q is usually a simple linear function of the

order p of the scheme. Achieved results, as we have anticipated, correspond to [28]

where the author examined the Cj–closeness, j ≥ 0, between the flow and its nu-

merical approximation. Our approach uses the method of a moving orthonormal

system (introduced rigorously in [32] and then used successfully in [6, 8, 59]) and

the Newton–Kantorovich type theorem (cf. [37, 47, 67]).

In the end of Chapter 2 we apply the previously established properties of Pm.

It is a slight completion of the paper [21] where two closed curves were found in a

neighborhood of the orbit γ. The first one is the set of m-periodic points x of the dis-
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cretization scheme, where the step h of the scheme depends on x and is close enough

to 1/m. The existence and uniqueness of this curve was shown under the nondegen-

eracy condition of γ. The second curve, the maximal invariant set of the scheme in a

neighborhood of γ,was derived basically under the hyperbolicity of γ, for any suffi-

ciently small step (this is a historically well-known topic, it was treated for example

in [6, 8, 22, 53]). With our setting we show in Section 2.4 that the nondegeneracy

of γ in a small surrounding neighborhood leads us to the third interesting curve.

Namely the set of those points which are invariant under the action of Pm. We es-

tablish the existence and uniqueness for anym large enough and any h close enough

to 1/m. We also give a short remark about the spectral property of this curve.

3



Chapter 1

Multivalued Integral Manifolds

1.1 Preliminaries

1.1.1 Measure Theory

Throughout the whole chapter except Section 1.3 we suppose thatX is a real Banach

space (a complete normed space over the field R). We say that an interval I ⊂ R of

arbitrary type is positive if |I| > 0 for its (Lebesgue) measure (the case +∞ is also

involved). For this subsection assume that I ⊂ R is a nonempty interval.

The function f : I → X is strongly measurable1 (abbreviation s. m.) if the range

f(I) is separable and f is measurable (f is measurable if the pre-image f−1(B) is a

Borel set for all Borel sets B ⊂ X). Further f is simple if it has only finitely many

values and is strongly measurable. A fundamental fact about s. m. functions is the

following lemma.

Lemma 1.1 (The approximation property of s. m. functions). Suppose that we have

a s. m. function f : I → X. Then there is a sequence {fn}∞n=1 of simple functions which

converges pointwise to f and satisfy the estimation |fn(t)| ≤ |f(t)| for all t ∈ I. Moreover

every pointwise limit of a sequence of s. m. functions is again strongly measurable, in other

words, the set of s. m. functions is closed under the formation of pointwise limits.

Proof. See [11, Appendix E].

A function f : I ×X → X has a Carathéodory property if at one hand f(t, ·) : X →

X is continuous for all fixed t ∈ I and on the other hand f(·, x) : I → X is s. m. for
1There are slightly different approaches of this notion, we follow [3, 11].
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all fixed x ∈ X. We denote the set of these function by CAR(I,X). The following

consequence of Lemma 1.1 will be useful for us.

Lemma 1.2. Suppose that f ∈ CAR(I,X) and µ : I → X is a s. m. function, then the

partially composed mapping g : I → X defined as g(t) := f(t, µ(t)) is also a s. m. function.

Proof. As the proof of [3, Lemma 2.2] where continuous µ was investigated.

We suppose that the reader has been acquainted with the theory of Lebesgue

integrals. The brief definition of Bochner integrals using Lebesgue integrals is the

following one: a s. m. function f : I → X is Bochner integrable (or simply integrable) if

the norm function |f | : I → R defined as |f |(t) := |f(t)| is Lebesgue integrable. The

function f is called locally integrable if it is s. m. on I and integrable over compact

subintervals of I.

For an integrable simple function f =
∑k

j=1 αjχIj where αj ∈ R, Ij ⊂ I are

measurable and χIj is the characteristic function of the set Ij we define the Bochner

integral as ∫
i

fdt :=
k∑
j=1

aj|Ij|.

For an arbitrary integrable function from Lemma 1.1 we get simple integrable func-

tions fn such that f = limn→∞ fn, |fn(t)| ≤ |f(t)|. Then the well-known Lebesgue’s

Dominated Convergence Theorem for real-valued functions implies the well-defi-

niteness of ∫
I

fdt := lim
n→∞

∫
I

fndt.

1.1.2 The Uniform Contraction Principle

One of the most often used tools in the theory of differential equations is the Uni-

form Contraction Principle. We do not formulate it in the most general version, but

only the case what we use. In general | · |X will denote the norm in a Banach space

X, however in most of the cases there are no arising confusions so we use simply a

notation | · |.

Theorem 1.3. Assume that X is a Banach space, M is a nonempty metric space with a

metric d and f : X ×M → X is a uniform contraction that is there exist α ∈ [0, 1) such

5



that

|f(x1, y)− f(x2, y)| ≤ α|x1 − x2|, x1, x2 ∈ X, y ∈M.

Then for all y ∈ M there exists a unique fixed point x = x(y) of the function f(·, y) :

X → X. In addition x : M → X is continuous under the continuity assumption of

f(x, ·) :M→ X for every x ∈ X. The uniform Lipschitz property

|f(x, y1)− f(x, y2)| ≤ Ld(y1, y2), x ∈ X, y1, y2 ∈M

implies

|x(y1)− x(y2)| ≤ L

1− α
d(y1, y2), x ∈ X, y1, y2 ∈M.

Proof. The existence and the uniqueness of x(y) is a straightforward application of

Banach’s Fixed Point Theorem (cf. [17, Theorem 7.1, p. 39]). The continuity and the

Lipschitz property follows from the identity

|x(y1)− x(y2)| ≤ 1

1− α
|f(x(y1), y1)− f(x(y1), y2)|

which is a consequence of

|x(y1)− x(y2)| = |f(x(y1), y1)− f(x(y2), y2)|

≤ |f(x(y1), y1)− f(x(y1), y2)|+ |f(x(y1), y2)− f(x(y2), y2)|

≤ |f(x(y1), y1)− f(x(y1), y2)|+ α |x(y1)− x(y2)| .

1.1.3 Solution Concepts, Inflated Differential Equations

Suppose for this subsection that I is a positive interval andM is a topological space.

Our subject of investigation will be the ordinary differential equations (ODE)

ẋ = f(t, x, y) (1.1)

6



for parameters y ∈M and the inflated differential equation (IDE)

ẋ ∈ F (t, x,X1) (1.2)

where X1 = {y ∈ X : |x| ≤ 1} and F (t, x,X1) = {F (t, x, u) : u ∈ X1} for an arbi-

trary function F : I × X × X1 → X. Here and later on Y1 designate the closed unit

ball for any Banach space Y.

Definition 1.4. Assume that J is a positive subinterval of I and f : I ×X ×M→ X

satisfies f(·, ·, y) ∈ CAR(I,X) for all y ∈ M. A continuous function λ : J → X is a

solution of the ODE (1.1) at the parameter value y ∈ M if the function f(·, λ(·), y) :

J → X is locally integrable and

λ(t)− λ(s) =

∫ t

s

f(τ, λ(τ), y)dτ

holds for all s, t ∈ J. In addition we say that λ satisfies the initial condition x(t0) = x0

for some fixed values t0 ∈ I, x0 ∈ X if t0 ∈ J and λ(t0) = x0.

Remark 1.1. A function f : J → X is said to be absolutely continuous (abbreviated

a. c.) if there is an integrable function g : J → X such that f(t) = f(s) +
∫ t
s
g(τ)dτ

for all s, t ∈ J . Locally a. c. means a. c. on every compact subinterval. Note that

in the context of Definition 1.4 a solution λ of (1.1) is automatically locally abso-

lutely continuous on J. The fundamental properties of a. c. functions implies that

λ is differentiable a. e. in J and (1.1) is valid a. e. in J (a. e. is used for “almost

everywhere”, it means that the measure of the set where the given property does

not hold is zero). The given notion in Definition 1.4 is called sometimes absolutely

continuous or Carethedéodory or generalized solutions (c.f. [40, Chapter 18]).

Let us recall the following fundamental theorem about existence, uniqueness and

continuous dependence of these solutions.

Theorem 1.5 (See Theorem 2.4 in [3]). Suppose that

f : I ×X ×M→ X, f(·, ·, y) ∈ CAR(I,X) for all y ∈M.

7



Assume also with locally integrable functions l, l0 : I → R+
0 the following conditions

|f(t, x1, y)− f(t, x2, y)| ≤ l(t)|x1 − x2|,

|f(t, 0, y)| ≤ l0(t),

for almost all t ∈ I, for all x1, x2 ∈ X and y ∈M. Finally, suppose that f(t, x, ·) :M→ X

is continuous for all (t, x) ∈ I ×X. Then the initial value problem

ẋ = f(t, x, y), x(t0) = x0

has a unique solution λ(·; t0, x0, y) : I → X for all (t0, x0, y) ∈ I × X ×M. In addition

the so-defined mapping λ : I × I ×X ×M→ X is continuous.

Let J be a positive interval. We introduce a function space

H(J) := {h : J → X : h is s. m. and |h|J,∞ <∞} (1.3)

where |h|J,∞ = supt∈J |h(t)|. It is easy to see that H(J) endowed with the norm | · |J,∞
is a Banach space. For simplicity we introduce also

H := H(R), | · |∞ := | · |R,∞, H±τ := H(R±τ ), | · |±τ := | · |R±τ ,∞.

where R+
τ := [τ,∞) and R−τ := (−∞, τ ] for τ ∈ R. We will refer to the elements of

H(J) as selectors.

Definition 1.6. Assume that J ⊂ I for positive intervals J, I. We say that the contin-

uous function λ : J → X is a solution of the IDE (1.2) corresponding to the selector

h ∈ H(J)1 if λ is a solution of ẋ = F (t, x, h(t)) (in the sense of Definition 1.4). In

addition we say that λ satisfies the initial condition x(t0) = x0 for t0 ∈ I, x0 ∈ X if we

have t0 ∈ J and λ(t0) = x0.

Remark 1.2. Consider a multivalued mapping F̃ from I ×X to the set of all subsets

of X (usual notation is F : I ×X ; X). Then we should investigate a more general

differential inclusion ẋ ∈ F̃ (t, x). Here a solution would be an a. c. function λ : J → X

for which the relation ẋ(t) ∈ F̃ (t, x(t)) holds for a. e. t ∈ J. However, following

papers [12, 13] we cover only those differential inclusions where F̃ has a suitable

8



single valued parametrization F : I×X×X1 → X, that is F̃ (t, x) = F (t, x,X1) (about

the question of the existence of such a parametrization see the thorough studies

in [1, 2, 18, 58, 63]; for example in the case X = Rn with a convex valued F̃ which

is continuous in x (we do not present the definition of the continuity of multivalued

mappings – interested reader should consult [2]) a parametrization is always pos-

sible – c.f. [46]). Moreover in a case when F (·, x, u) : I → X is measurable and

F (t, ·, ·) : X ×X1 → X is continuous we can justify our Definition 1.6 because then

the set of those locally a. c. functions which satisfies the relation ẋ ∈ F (t, x,X1) a. e.

coincides with the set of solutions in a sense of our Definition 1.6 (c.f. [34, Theorem

7.2]). The indubitable advantage of Definition 1.6 is that the final object of considera-

tion is a differential equation with a right-hand side parameterized over the function

space H(J)1.

Theorem 1.7. Assume that I is a positive interval and the right-hand side function F :

I ×X ×X1 → X satisfies the following three requirements:

(i) F (·, x, u) : I → X is s. m. for all fixed (x, u) ∈ X ×X1,

(ii) F (t, ·, ·) : X ×X1 → X is continuous for all t ∈ I,

(iii) there exists a locally integrable functions l0, l1, l2 : I → [0,∞) such that

|F (t, x1, u1)− F (t, x2, u2)| ≤ l1(t)|x1 − x2|+ l2(t)|u1 − u2|,

|F (t, 0, 0)| ≤ l0(t),

for a. e. t ∈ I and for all x1, x2 ∈ X, u1, u2 ∈ X1.

Under these conditions for every triple (t0, x0, h) ∈ I × X × H(I)1 there exists a unique

solution λ(·) = λ(·; t0, x0, h) : I → X of the initial value problem

ẋ = F (t, x, h(t)), x(t0) = x0.

In other words, for every (t0, x0) ∈ I ×X the initial value problem

ẋ ∈ F (t, x,X1), x(t0) = x0

9



has a unique solution λ(·) = λ(·; t0, x0, h) corresponding to the selector h ∈ H(I)1. In

addition the mapping λ : I × I ×X × H(I)1 → X is continuous.

Proof. The proof follows the lines of [3, Theorem 2.4]. We discuss only the main

idea. Without loss of generality we may restrict our attention to the case I = [a, b]

for arbitrary fixed a < b, a, b ∈ R (the simple reason is that every positive interval I

can be written in the form I =
⋃
j∈N[aj, bj] where aj+1 ≤ aj < bj ≤ bj+1 for j ∈ N and

aj, bj ∈ R).

Denote by C(I,X) the Banach space of continuous functions x : I → X with a

norm | · |∞. Define an operator T for x ∈ C(I,X) and t0, t ∈ I, x0 ∈ X, h ∈ H(I)1 as

T (x; t0, x0, h)(t) := x0 +

∫ t

t0

F (s, x(s), h(s))ds.

It turns out that T : C(I,X) × I × X × H(I)1 → C(I,X) is well-defined and

continuous. Moreover for n ∈ N sufficiently large the iterated mapping T n (defined

as T k(x; t0, x0, h) := T (T k−1(x; t0, x0, h); t0, x0, h) for k ≥ 2 and T 1 := T ) is a uniform

contraction at the first variable. Applying Theorem 1.3 we get a unique fixed point

x of T n which depends continuously on the “parameters” t0, x0, h. Now T (x) =

T (T n(x)) = T n(T (x)) (t0, x0, h omitted) therefore using the uniqueness of x we have

T (x) = x and the proof is complete.

1.1.4 Non-autonomous Systems

For a Banach space X we introduce B(X) the space of bounded and linear operators

L : X → X . The norm in B(X) is given as

|L|B(X) := sup
|x|X=1,x∈X

|Lx|X , L ∈ B(X).

Let us have a positive interval I and an arbitrary function A : I → B(X).

Definition 1.8. We say that Φ : I × I → B(X) is the evolution operator of the non-

autonomous homogeneous linear differential equation

ẋ = A(t)x, x ∈ X

10



if Φ(·, s) : I → B(X) is a solution of the operator valued (Y (·) ∈ B(X)) initial value

problem

Ẏ = A(t)Y, Y (s) = IX .

Sometimes it is also convenient to use the solution of the operator differential

equation Ẏ = A(t)Y on I with the initial condition Y (0) = IX . It is denoted by

Φ̃ and it is a function from I to B(X). The obvious relations between Φ and Φ̃ are

Φ̃(t) = Φ(t, 0) and Φ(t, s) = Φ̃(t) ◦
(
Φ̃(s)

)−1
.

Consequence 1.9 (of Theorem 1.5). Suppose that A : I → B(X) is locally integrable

(see Subsection 1.1.1) then Theorem 1.5 ensures that there is a unique evolution operator

Φ : I × I → B(X) of ẋ = A(t)x. In addition Φ is continuous.

Proof. Apply Theorem 1.5 in a framework f : I × B(X) → B(X), f(t, Y ) = A(t)Y

and l(t) = |A(t)|, l0 = 0. Then set Φ(t, s) := λ(t, s, IX).

From now on we always suppose at least that A is locally integrable. We collect

some important properties of Φ to the following lemma.

Lemma 1.10. For all t, s ∈ I we have Φ(t, s) ∈ GL(X) which is the group of invertible

operators in B(X). Moreover Φ : I × I → B(X) is continuous, |Φ(t, s)|B(X) ≤ e|
∫ t
s |A(τ)|dτ |

for all s, t ∈ I and the following cocycle property is valid

Φ(t3, t2) ◦ Φ(t2, t1) = Φ(t3, t1), t1, t2, t3 ∈ I.

In addition for any locally integrable function f : I → X there exists a unique solution

of the inhomogeneous linear differential equation ẋ = A(t)x + f(t) with initial condition

x(t0) = x0 ∈ X, t0 ∈ I. Moreover this solution is given by an explicit formula the so-called

variation of constants formula

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, s)f(s)ds. (1.4)

Proof. See Lemma 2.9 and Theorem 2.10 in [3].

Definition 1.11. We say that the equation ẋ = A(t)x possesses an exponential di-

chotomy on I if there are constants K ≥ 1, α < β, α, β ∈ R and a projection P ∈ B(X)
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(projection means that P 2 = P ) such that

∣∣∣Φ̃(t) ◦ P+ ◦
(
Φ̃(s)

)−1
∣∣∣
B(X)
≤ K eα(t−s), t ≥ s, t, s ∈ I∣∣∣Φ̃(t) ◦ P− ◦

(
Φ̃(s)

)−1
∣∣∣
B(X)
≤ K eβ(t−s), t ≤ s, t, s ∈ I

 (1.5)

where P+ := P and P− := IX − P+. We denote by Eα,β(I) the set of all locally

integrable A : R → L(X) for which ẋ = A(t)x possesses an exponential dichotomy

on I.

Furthermore we introduce notations

P±(t) := Φ̃(t) ◦ P± ◦
(
Φ̃(t))−1, P±t := P±(t)(X).

Note that P±(t) are projections and P+(t) + P−(t) = I. It is easy to establish the

quasi-commutation P±(t) ◦Φ(t, s) = Φ(t, s) ◦ P±(s) for any s, t ∈ I. Now (1.5) could

be equivalently formulated using the co-cycle property of Φ as

∣∣Φ(t, s)P+(s)
∣∣ ≤ K eα(t−s), t ≥ s,

∣∣Φ(t, s)P−(s)
∣∣ ≤ K eβ(t−s), t ≤ s

or

∣∣P+(t)Φ(t, s)
∣∣ ≤ K eα(t−s), t ≥ s,

∣∣P−(t)Φ(t, s)
∣∣ ≤ K eβ(t−s), t ≤ s

The notion of exponential dichotomy and its various basic applications is nicely

presented for example in [14]. Note that the Definition 1.11 makes sense also for a

complex Banach spaces.

Remark 1.3. Suppose that X = Kn with Kn = Rn or Cn. Let A be a constant squared

matrix with n rows, we use notation A ∈ Mn×n(K). Now a sufficient condition for

A ∈ Eα,β(R) is

{λ ∈ C : α ≤ <(λ) ≤ β} ∩ σ(A) = ∅

where < is the real-part function and σ(A) is the spectrum of A. Moreover A ∈

Eα,β(R) still holds if we assume a weaker {λ ∈ C : α < <(λ) < β} ∩ σ(A) = ∅ and

that for any λ ∈ σ(A) such that <(λ) ∈ {α, β} the corresponding complex Jordan

block is a diagonal matrix λI. For details one should consult the books [35, 41]).

12



We adopt the definition of quasibounded functions from [3, Definition 3.1]. We say

that the interval I is unbounded to the left if I is one of the interval types (−∞, a),

(−∞, a], R, similarly I is unbounded to the right if I is one of the following interval

types (a,∞), [a,∞), R.

Definition 1.12. Assume that I is unbounded to the left (resp. to the right). Let

g : I → X be an arbitrary function and γ ∈ R. We say that g is γ−-quasibounded (resp.

γ+-quasibounded) if ‖g‖−τ,γ <∞ (resp. ‖g‖+
τ,γ <∞) for some τ ∈ I , where

‖g‖−τ,γ := sup
t∈R−τ
|g(t)| e−γt,

(
resp. ‖g‖+

τ,γ := sup
t∈R+

τ

|g(t)| e−γt
)

In the peculiar I = R case we say that g is γ-quasibounded if ‖g‖γ <∞where

‖g‖γ := sup
t∈R
|g(t)| e−γt.

We use the abbreviation q. b. for the long word “quasibounded”.

Now we give a basic information about q. b. solutions of an inhomogeneous

linear differential equations. Exponential dichotomy plays a crucial role.

Lemma 1.13. Suppose that τ, α, β, γ ∈ R, α < γ < β and A ∈ Eα,β(R+
τ ) (resp. A ∈

Eα,β(R−τ )). Let us have a s. m. function f : R+
τ → X (resp. f : R−τ → X) such that

‖f‖+
τ,γ <∞ (resp. ‖f‖−τ,γ <∞). Then µ : R+

τ → X (resp. µ : R−τ → X) is a γ+-q. b. (resp.

γ−-q. b.) solution of ẋ = A(t)x+f(t) if and only if there is a ξ+ ∈ P+
τ (resp. ξ− ∈ P−τ ) such

that

µ(t) = Φ(t, τ)ξ+ +

∫ t

τ

Φ(t, s)P+(s)f(s)ds−
∫ ∞
t

Φ(t, s)P−(s)f(s)ds(
resp. µ(t) = Φ(t, τ)ξ− +

∫ t

τ

Φ(t, s)P−(s)f(s)ds+

∫ t

−∞
Φ(t, s)P+(s)f(s)ds

)
.


(1.6)

In addition in both ± cases we have an estimation

‖µ‖±τ,γ ≤ K e−γτ |ξ±|+K‖f‖±τ,γ
(

1

β − γ
+

1

γ − α

)
. (1.7)

As a trivial consequence we get also that if f : R → X is a s. m. function with ‖f‖γ < ∞

and A ∈ Eα,β(R), then there is a unique γ-q. b. solution y : R → X of ẋ = A(t)x + f(t)
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and it is given by the formula

y(t) =

∫ t

−∞
Φ(t, s)P+(s)f(s)ds−

∫ ∞
t

Φ(t, s)P−(s)f(s)ds. (1.8)

Further we have

‖y‖γ ≤ K‖f‖γ
(

1

β − γ
+

1

γ − α

)
. (1.9)

Proof. It is enough to study the “+ case” that is to characterize γ+-q. b. solutions.

Indeed, it is equally easy to perform the analogical proof of the “− case” (moreover

the transformation y(t) = x(−t) could be used to switch from “− to + case”). Hav-

ing the representation (1.6) from (1.5) and |f(s)| ≤ ‖f‖+
τ,γ eγs we infer easily (1.7).

Similarly (1.9) follows from (1.8) which is again a consequence of (1.6). Hence it is

enough to show (1.6) in the “+ case”.

Let µ : R+
τ → X be a γ+-q. b. solution of ẋ = A(t)x+ f(t). From (1.4) we have

µ(t) = Φ(t, t0)µ(t0) +

∫ t

t0

Φ(t, s)f(s)ds, t, t0 ≥ τ. (1.10)

Using the projection P−(τ) for both sides of equation with a rearrangement, setting

t = τ we get easily∣∣∣∣P−(τ)µ+(τ) +

∫ t0

τ

Φ(τ, s)P−(s)f(s)ds

∣∣∣∣ =
∣∣Φ(τ, t0)P−(t0)µ+(t0)

∣∣
≤ K eβ(τ−t0)‖µ‖+

τ,γe
γt0 = K eβτ‖µ‖+

τ,γ e(γ−β)t0 .

Taking the limit as t0 → ∞ we get P−(τ)µ(τ) = −
∫∞
τ

Φ(τ, s)P−(s)f(s)ds. Now set

ξ+ := P+(τ)µ(τ). Using µ(τ) = ξ+ −
∫∞
τ

Φ(τ, s)P−(s)f(s)ds and (1.10) with t0 = τ

we arrive at (1.6).

On the other hand let us have an arbitrary ξ+ ∈ P+
τ and suppose that µ is given

by (1.6). From Lemma 1.13 we have that Φ : R× R→ B(X) is continuous, therefore

Φ(r, ·)P−(·) : R→ B(X)

is also continuous (for any r ∈ R). Hence g(s) := Φ(r, s)P−(s)f(s) is s. m. on R+
r .

Moreover using (1.5) and that f is γ+-quasibounded, it turns out that g is integrable
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on R+
r . We get similarly that

∫ ∞
t

Φ(t, s)P−(s)f(s)ds = Φ(t, τ)

∫ ∞
τ

Φ(τ, s)P−(s)f(s)ds−
∫ t

τ

Φ(t, s)P−(s)f(s)ds.

So (1.10) is valid with t0 = τ . Using (1.4) we get that µ+ is a solution and its γ+-

quasiboundedness is once again the consequence of (1.5) and ‖f‖+
τ,γ <∞. The proof

is complete.

Applying Theorem 1.3 it is easy to extend this result to the Lipschitz nonlineari-

ties. In the formulation we are using the standard double notation ±.

Consequence 1.14. Let us have again τ, α, γ, β ∈ R such that α < γ < β and A ∈

Eα,β(R±τ ). Suppose that F ∈ CAR(R±τ , X), ‖F (·, 0)‖±τ,γ <∞ and

|F (t, x1)− F (t, x2)| ≤ L|x1 − x2|, t ∈ R±τ , x1, x2 ∈ X

for L ≥ 0. Finally suppose that KL
(

1
β−γ + 1

γ−α

)
< 1. Then for every ξ± ∈ P±τ there is a

unique γ±-q. b. solution µ of ẋ = A(t)x+ F (t, x) such that P±(τ)µ(τ) = ξ±.

Proof. We focus again only to the “+ case”. Let µ be a γ+-q. b. solution of ẋ =

A(t)x+ F (t, x). Then µ is s. m. and F (·, µ(·)) as well from Lemma 1.2. Moreover

‖F (·, µ(·))‖+
τ,γ ≤ ‖F (·, 0)‖+

τ,γ + L‖µ‖+
τ,γ <∞.

Now µ is a γ+-q. b. solution of the linear equation ẋ = A(t)x + F (t, µ(t)) hence

Lemma 1.13 implies that

µ(t) = Φ(t, τ)ξ+ +

∫ t

τ

Φ(t, s)P+(s)F (s, µ(s))ds−
∫ ∞
t

Φ(t, s)P−(s)F (s, µ(s))ds

for ξ+ ∈ P+
τ . Let us designate by C+

τ,γ the Banach space of continuous and γ+-q. b.

functions from R+
τ to X endowed with a norm ‖ · ‖+

τ,γ. Consider an operator T :

C+
τ,γ × P+

τ → C+
τ,γ defined as

T (x, ξ+) := Φ(t, τ)ξ+ +

∫ t

τ

Φ(t, s)P+(s)F (s, x(s))ds−
∫ ∞
t

Φ(t, s)P−(s)F (s, x(s))ds.

Still from Lemma 1.13 follows the well-definiteness of T . Note now that µ satisfies
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our theorem if and only if T (µ, ξ+) = µ for some ξ+. The central property of T is its

contractivity. For any η+ ∈ P+
τ , x1, x2 ∈ C+

τ,γ using the + variant of (1.7) with ξ+ := 0

and f(s) := F (s, x1(s))− F (s, x2(s)) we infer

‖T (x1, η
+)− T (x2, η

+)‖+
τ,γ ≤ KL

(
1

β − γ
+

1

γ − α

)
‖x1 − x2‖+

τ,γ.

Hence Theorem 1.3 is applicable (its remaining assumptions hold trivially) and its

statement completes the proof.

Remark 1.4. Let us suppose all the assumptions of the above consequence for two

values γ1,2 such that α < γ1 < γ2 < β. Then for the corresponding γ+
1,2-q. b. solutions

µγ1,ξ+ and µγ2,ξ+ of

ẋ = A(t)x+ F (t, x), P+(τ)x(τ) = ξ+

we have µγ1,ξ+ = µγ2,ξ+ . Indeed, for example in the “+ case” either of µγ1,ξ+ , µγ2,ξ+

is a γ+
2 -q. b. solution with P+(τ)µγ1(τ) = P+(τ)µγ2(τ) = ξ+. Hence the uniqueness

part of Consequence 1.14 for γ = γ2 implies our statement.
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c

1.2 Inflated Dynamics with Exponential Dichotomy

From now on our inflated differential equation will be of the form

ẋ ∈ A(t)x+ f(t, x) + g(t, x,X1) (1.11)

A central assumption in the whole section is A ∈ Eα,β(R) for various α < β. We

apply classical tools to detect and characterize bounded/quasibounded solutions of

(1.11) and corresponding multivalued stable/unstable integral manifolds.

1.2.1 Bounded Solutions

For this subsection suppose that

α < 0 < β and A ∈ Eα,β(R). (1.12)

It is easy to see according to Remark 1.3 that (1.12) for suitable α, β is always satisfied

for every constant matrix whose spectrum does not intersect the imaginary axis.

Next we briefly recall the results from [12, Section 4, Theorem 3 and 4]. For the

sake of completeness we also mention the main ideas of their proofs, again without

technical details.

Theorem 1.15 (Theorem 3 in [12]). Introduce κα,β := 1
β
− 1

α
. Let us have

f : R×X → X, g : R×X ×X1 → X

such that

(i) Smoothness: f(·, x), g(·, x, u) : R → X are s. m. for all x ∈ X, u ∈ X1 and

f(t, ·) : X → X, g(t, ·, ·) : X ×X1 → X are continuous for all t ∈ R,

(ii) Boundedness: |f(·, 0)|∞ <∞, |g(·, 0, 0)|∞ <∞,
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(iii) Lipschitz condition: there are constants L1, L2, L3 such that

|f(t, x1)− f(t, x2)| ≤ L1|x1 − x2|,

|g(t, x1, u1)− g(t, x2, u2)| ≤ L2|x1 − x2|+ L3|u1 − u2|

are valid for all t ∈ R, x1, x2 ∈ X, u1, u2 ∈ X1.

Finally suppose that

(iv) K(L1 + L2)κα,β < 1.

Then for every h ∈ H1 (see (1.3)) there exists a unique bounded solution Γ(·, h) : R→ X of

the problem (1.11) corresponding to the selector h. In addition the mapping Γ : R×H1 → X

is continuous with an estimate

|Γ(·, h1)− Γ(·, h2)|∞ ≤ C(K,L1, L2, L3, α, β)|h1 − h2|∞

where

C(K,L1, L2, L3, α, β) :=
KL3κα,β

1−K(L1 + L2)κα,β
. (1.13)

Proof. For x ∈ C(R, X), h ∈ H1 and t ∈ R we set

T (x, h)(t) :=

∫ t

−∞
Φ(t, s)P+(s)

[
f(s, x(s)) + g(s, x(s), h(s))

]
ds

−
∫ ∞
t

Φ(t, s)P−(s)
[
f(s, x(s)) + g(s, x(s), h(s))

]
ds.

 (1.14)

Lemma 1.13 for γ := 0 implies that T : C(R, X) × H1 → C(R, X) is well-defined,

continuous and that x is a bounded solution of ẋ = A(t)x + f(t, x) + g(t, x, h(t)) if

and only if T (x, h) = x. Moreover the uniform contractivity also follows from the

mentioned lemma. Application of Theorem 1.3 gives our assertions, where Γ(·, h) is

the unique fixed point of T (·, h).

For the later use we introduce another sets of selectors

Hε := {h ∈ H : |h|∞ ≤ ε},

H±τ,ε := {h : R±τ → X is s. m. and |h|±τ := sup
±(t−τ)≥0

|h(t)| ≤ ε},

 (1.15)
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where τ ∈ R, ε ∈ [0, 1]. Note that Hε,H
±
τ,ε are complete metric spaces with corre-

sponding metrics derived naturally from norms | · |∞, | · |±τ . Further in a situation

of Theorem 1.15 we put down an important set of initial positions of the bounded

solutions

Sτ,ε := {Γ(τ, h) : h ∈ Hε}, ε ∈ [0, 1], τ ∈ R.

It is easy to see that every assumption of the fundamental Theorem 1.7 are satisfied

in the context of the initial value problem

ẋ = A(t)x+ f(t, x) + g(t, x, h(t)), x(t0) = x0.

Hence we get the existence, uniqueness and continuous dependence of the solution

λ(·, t0, x0, h) for every triple (t0, x0, h) ∈ R ×X × H1. Trivially, Theorem 1.7 is appli-

cable also for intervals I = R±τ and we get also solutions λ±τ (·, t0, x0, h
±) on R±τ for

(t0, x0, h
±) ∈ R×X × H±τ,1. However the uniqueness of these solutions we have

λ(·, t0, x0, h) = λ±τ
(
·, t0, x0, h|R±τ

)
for any h ∈ H1. (1.16)

This argumentation justify that from now on we write in place of λ±τ simply λ.

For arbitrary functions f : Df → X, g : Dg → X we write f ⊂ g if Df ⊂ Dg and

g|Df = f. Now we define the stable set of Sτ,ε as

M s
τ,ε = M s

τ,ε(Sτ,ε) :=
{
ξ ∈ X : ∃h+ ∈ H+

τ,ε,h ∈ Hε such that h+ ⊂ h and

lim
t→∞
|λ(t, τ, ξ, h+)− Γ(t, h)| = 0

}
,

and the unstable one as

M s
τ,ε = Mu

τ,ε(Sτ,ε) :=
{
ξ ∈ X : ∃h− ∈ H−τ,ε,h ∈ Hε such that h− ⊂ h and

lim
t→−∞

|λ(t, τ, ξ, h−)− Γ(t, h)| = 0
}
.
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Further introduce

M̃ s
τ,ε :=

{
ξ ∈ X : ∃h+ ∈ H+

τ,ε such that |λ(·, τ, ξ, h+)|+τ <∞
}
,

M̃u
τ,ε :=

{
ξ ∈ X : ∃h− ∈ H−τ,ε such that |λ(·, τ, ξ, h−)|−τ <∞

}
.

Note the straightforward relations M s
τ,ε ⊂ M̃ s

τ,ε,M
u
τ,ε ⊂ M̃u

τ,ε.

Theorem 1.16 (Theorem 4 in [12]). Suppose all the assumptions of Theorem 1.15 and

choose τ ∈ R, ε ∈ [0, 1]. Then there are Lipschitz continuous functions

ws : P+
τ × H+

τ,ε → P−τ , wu : P−τ × H−τ,ε → P+
τ

such that

M s
τ,ε = M̃ s

τ,ε =
{
ξ+ + ws(ξ+, h+) : ξ+ ∈ P+

τ , h
+ ∈ H+

τ,ε

}
,

Mu
τ,ε = M̃u

τ,ε =
{
ξ− + wu(ξ−, h−) : ξ− ∈ P−τ , h− ∈ H−τ,ε

}
.

 (1.17)

Exact Lipschitz constants are expressed in the formulaes

∣∣ws(ξ+
1 , h

+
1 )− ws(ξ+

2 , h
+
2 )
∣∣ ≤

C̃(K,L1, L2, α, β)|ξ+
1 − ξ+

2 |+ C(K,L1, L2, L3, α, β)|h+
1 − h+

2 |+τ ,∣∣wu(ξ−1 , h−1 )− wu(ξ−2 , h−2 )
∣∣ ≤

C̃(K,L1, L2, α, β)|ξ−1 − ξ−2 |+ C(K,L1, L2, L3, α, β)|h−1 − h−2 |−τ ,


(1.18)

where C is defined in (1.13) and C̃ := K
1−K(L1+L2)κα,β

.

Proof. We give a short proof only for the stable case, the unstable variant is han-

dled analogically. At first a characterisation of M̃ s
τ,ε in (1.17) is proven and than the

equality M̃ s
τ,ε = M s

τ,ε. Arguments from Lemma 1.13 yield that the suitable operator

is

T (x, ξ+, h+)(t) := Φ(t, τ)ξ+ +

∫ t

τ

Φ(t, s)P+(s)Λx,h+(s)ds−
∫ ∞
t

Φ(t, s)P−(s)Λx,h+(s)ds

viewed as T : C+
τ × P+

τ × H+
τ,ε → C+

τ , where Λx,h+(s) := f(s, x(s)) + g(s, x(s), h+(s))

and C+
τ is the Banach space of bounded and continuous functions from R+

τ to X

endowed with a norm | · |+τ . The operator T is suitable in a sense that µ ∈ C+
τ is a
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bounded solution of ẋ = A(t)x+ f(t, x) + g(t, x, h+(t)) if and only if T (µ, ξ+, h+) = µ

for some ξ+ ∈ P+
τ .

Still from Lemma 1.13 we get that Theorem 1.3 is applicable. It shows the ex-

istence of the unique fixed point xξ+,h+ ∈ C+
τ of T (·, ξ+, h+) and also the corre-

sponding Lipschitz bounds. The statement of (1.17) for M̃ s
τ,ε then follows with

ws(ξ+, h+) := xξ+,h+(τ).

For the nontrivial M̃ s
τ,ε ⊂ M s

τ,ε we use Lemma 1.14. Let ξ ∈ M̃ s
τ,ε, then there is an

h+ ∈ H+
τ,ε such that |λ(·, τ, ξ, h+)|+τ <∞. Let us have u : R+

τ → X given by

u(t) = λ(t, τ, ξ, h+)− Γ(t, h), h ∈ Hε, h
+ ⊂ h.

Then u is a bounded solution (on R+
τ ) of ẋ = A(t)x+ F (t, x) on R+

τ where

F (t, x) := f(t, x+ Γ(t, h))− f(t,Γ(t, h)) + g(t, x+ Γ(t, h), h+(t))− g(t,Γ(t, h), h+(t)).

On the other hand ‖F (·, 0)‖+
τ,γ = 0 < ∞ for any γ ∈ R and |F (t, x1)− F (t, x2)| ≤

(L1 + L2)|x1 − x2|. Finally choose γ < 0 such that K(L1 + L2)
(

1
β−γ + 1

γ−α

)
< 1,

such a choice is possible due to the requirement (iv) of Theorem 1.15. Then every

assumption of Lemma 1.14 is satisfied with L := L1 + L2. This yields a γ+-q. b.

solution v of ẋ = A(t)x+ F (t, x).

From Remark 1.4 we easily have u = v, hence |u(t)| ≤ ‖v‖+
τ,γ eγt → 0 as t → ∞

and the proof is complete. Note that we get as a by-product the uniform exponential

convergence in the definitions of the sets M s
τ,ε,M

u
τ,ε (uniformity for h+ ∈ H+

τ,ε, h ∈

Hε, h
+ ⊂ h and τ ∈ R – because γ does not depend on these quantities).

Remark 1.5. An easy (in fact only formal) modification of the above proof yields

Lipschitz functions

W s : P+
τ × Hε → P−τ , W u : P−τ × Hε → P+

τ

such that

M s
τ,ε =

{
ξ+ +W s(ξ+, h) : ξ+ ∈ P+

τ , h ∈ Hε
}
,

Mu
τ,ε =

{
ξ− +W u(ξ−, h) : ξ− ∈ P−τ , h ∈ He

}
.
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Their Lipschitz bounds (using C̃, C from (1.18)) are

∣∣W s(ξ+
1 , h1)−W s(ξ+

2 , h2)
∣∣ ≤ C̃|ξ+

1 − ξ+
2 |+ C|h1 − h2|∞,∣∣W u(ξ−1 , h1)−W u(ξ−2 , h2)

∣∣ ≤ C̃|ξ−1 − ξ−2 |+ C|h1 − h2|∞.

Remark 1.6. Sets characterized in Theorem 1.16 have some invariance properties.

Namely

λ(t, τ, ξ+ +W s(ξ+, h), h) ∈M s
t+τ,ε, λ(t, τ, ξ− +W u(ξ−, h), h) ∈Mu

t+τ,ε

for every t, τ ∈ R, ξ± × P±τ , h ∈ Hε. Hence we sometimes refer to them as the inflated

or multivalued integral manifolds of (1.2). Even though integral manifolds are usually

defined as subsets of R×X not only of X parameterized on R. New sets

Ms
ε := {(τ, ξ, h) ∈ R×X × Hε : |λ(·, τ, ξ, h|+τ <∞}

Mu
ε := {(τ, ξ, h) ∈ R×X × Hε : |λ(·, τ, ξ, h|−τ <∞}

would fix this problem we have for them

(τ, ξ, h) ∈Mr
ε ⇒ (t+ τ, λ(t, τ, ξ, h), h) ∈Mr

e, t ∈ R, r ∈ {s, u}.

However from Theorem 1.16 we have (we describe only the stable case)

Ms
ε =

{(
τ, ξ+ +W (ξ+, h), h

)
: (τ, ξ+, h) ∈ R× P+

τ × Hε
}

=
{(
τ, Φ̃(τ)ξ+

0 +W (Φ̃(τ)ξ+
0 , h), h

)
: (τ, ξ+

0 , h) ∈ R× P+
0 × Hε

}
where we have used that Φ̃(τ)|P+

0
: P+

0 → P+
τ is a bijective mapping (c.f. Definition

1.8). Hence for

Ws : R× P+
0 × Hε → X, Ws(τ, ξ+

0 , h) := Φ̃(τ)ξ+
0 +W (Φ̃(τ)ξ+

0 , h)

we have a graph characterization

Ms
ε =

{(
τ,W(τ, ξ+

0 , h), h
)

: (τ, ξ+
0 , h) ∈ R× P+

0 × Hε
}
.
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Note thatWs is uniformly Lipschitz in ξ+
0 and h, however it is generally (due to our

Carathédeory settings) only continuous in τ. Further we will not give remarks in this

spirit (because it is more technical then interesting) and we restrict our attention to

the τ -parametric sets M s
τ,ε,M

u
τ,ε.

1.2.2 Quasibounded Solutions

Now we are going to investigate the set of quasibounded solutions of (1.11) and their

stability/instability region. That is we are looking for quasibounded counterparts of

Theorem 1.15 and 1.16. Our main tool will be the simple transformation discussed

in the next lemma.

Lemma 1.17. Assume that I is a positive interval and f ∈ CAR(I,X). Let x : I → X be

a solution (in the sense of the Definition 1.4) of ẋ = f(t, x) and ρ : I → R \ {0} is a C1

scalar function. Then y : I → X defined as y(t) := ρ(t)x(t) is a solution of ẏ = g(t, y) for

g(t, y) = ρ̇(t)
ρ(t)
y + ρ(t)f(t, 1

ρ(t)
y).

Proof. Since x is a solution so f(·, x(·)) : I → X is locally integrable and x(t) −

x(s) =
∫ t
s
f(τ, x(τ))dτ is valid for t, s ∈ I. Fix an arbitrary functional φ ∈ X∗ and

elements t, s ∈ I such that s < t (X∗ is the dual space of X). With a notation

u(r) := φ(x(r)) we have u(r2) − u(r1) =
∫ r2
r1
φ(f(τ, x(τ)))dτ for r1, r2 ∈ [s, t]. Then

u : [s, t] → R is absolutely continuous on [s, t]. So u̇(r) exists for a. e. r ∈ [s, t]

and u̇(r) = φ(f(r, x(r))) for these r ∈ [s, t]. This means that v(r) := ρ(r)u(r) is also

absolutely continuous on [s, t] with derivative

v̇(r) = u̇(r)ρ(r) + u(r)ρ̇(r) = φ(f(r, x(r)))ρ(r) + φ(x(r))ρ̇(r)

for a. e. r ∈ [s, t]. Therefore for all r1, r2 ∈ [s, t] we have

v(r2)− v(r1) =

∫ r2

r1

(
φ(f(τ, x(τ)))ρ(τ) + φ(x(τ))ρ̇(τ)

)
dτ.

After elementary computations we obtain for all φ ∈ X∗ and s, t ∈ I the follow-

ing equality

φ
(
ρ(t)x(t)− ρ(s)x(s)

)
= φ

[∫ t

s

(
ρ(τ)f(τ, x(τ)) + ρ̇(τ)x(τ)

)
dτ

]
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or with a notation y(t) = ρ(t)x(t)

φ
(
y(t)− y(s)

)
= φ

[∫ t

s

(
ρ(τ)f

(
τ,

1

ρ(τ)
y(τ)

)
+
ρ̇(τ)

ρ(τ)
y(τ)

)
dτ

]
.

A consequence of the Hahn-Banach Theorem states that functionals separates po-

ints, so we have

y(t)− y(s) =

∫ t

s

(
ρ(τ)f

(
τ,

1

ρ(τ)
y(τ)

)
+
ρ̇(τ)

ρ(τ)
y(τ)

)
dτ

which means exactly that y : I → X is a solution of ẏ = g(t, y).

Remark 1.7. This lemma shows in fact that it is possible to transform questions about

γ-quasibounded solutions of ẋ = A(t)x + F (t, x) to the task about the bounded

solutions of ẏ = (A(t) − γI)y + e−γtF (t, eγty). The right transformation between

these problems is y(t) = x(t) e−γt and for justification it is enough to apply Lemma

1.17 with ρ(t) := e−γt.

Noting the bijective correspondence between these solution sets and the fact

(A(t)− γI) ∈ Eγ−α,β−γ(I)

with γ − α < 0 < β − γ, we can generalize Theorem 1.15 as follows.

Theorem 1.18. Assume that we have functions f : R × X → X, g : R × X × X1 → X

and a constant γ ∈ (α, β) such that

(i) Smoothness: f(·, x), g(·, x, u) : R → X are s. m. for all x ∈ X, u ∈ X1 and

f(t, ·) : X → X, g(t, ·, ·) : X ×X1 → X are continuous for all t ∈ R,

(ii) Quasiboundedness: ‖f(t, 0)‖γ <∞, ‖g(t, 0, 0)‖γ <∞,

(iii) Lipschitz condition: there are constants L1, L2, L3 such that

|f(t, x1)− f(t, x2)| ≤ L1|x1 − x2|

and

|g(t, x1, u1)− g(t, x2, u2)| ≤ L2|x1 − x2|+ L3 eγt|u1 − u2| (1.19)
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are valid for all t ∈ R, x1, x2 ∈ X, u1, u2 ∈ X1,

(iv) K(L1 + L2)κα−γ,β−γ < 1.

Then for every h ∈ H1 there exists a unique γ-q. b. solution Γγ(·, h) : R → X of the

problem (1.11) corresponding to the selector h. In addition the mapping Γγ : R × H1 → X

is continuous and

‖Γγ(·, h1)− Γγ(·, h2)‖γ ≤ C(K,L1, L2, L3, α− γ, β − γ)|h1 − h2|∞,

where C is given in (1.13).

Proof. Apply the transformation y(t) = %(t)x(t) from Lemma 1.17 with %(t) := e−γt.

Then the differential inclusion for y is

ẏ ∈ Ã(t)y + f̃(t, y) + g̃(t, y,X1) (1.20)

where

Ã(t) = A(t)− γI ∈ Eα−γ,β−γ(R), α− γ < 0 < β − γ,

f̃(t, y) = e−γtf(t, eγty), g̃(t, y, u) = e−γtg(t, eγty, u).

Assumptions (i)–(iv) of Theorem 1.15 are direct counterparts of (i)–(iv) listed above.

Hence, Theorem 1.15 ensures the well-definiteness of the solution operator Γ̃ : R ×

H1 → X of bounded solutions of (1.20). With a notation Γγ(t, h) := eγtΓ̃(t, h) we

arrive at the statement and the proof is finished.

Remark 1.8. At first glance the Lipschitz-exponential condition (1.19) is quite unnat-

ural. To avoid it let us introduce a new set of selectors

Hγε := {h ∈ Hε : ‖h‖γ <∞}, ε ∈ [0, 1].

Hγε endowed with a metric dγ(h1, h2) := ‖h1 − h2‖γ is a complete metric space (the

topology on Hγε is induced by this metric). Now suppose all the conditions of Theo-

rem 1.18 and replace (1.19) by the usual

|g(t, x1, u1)− g(t, x2, u2)| ≤ L2|x1 − x2|+ L3|u1 − u2|. (1.21)
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In this framework we have to modify our the assertion of our theorem as follows.

Corresponding to any h ∈ Hγ1 there is a unique γ-q. b. solution Γ̂γ(·, h) : R → X of

(1.11). Γ̂γ : R× Hγ1 → X is continuous and

‖Γ̂γ(·, h1)− Γ̂γ(·, h2)‖γ ≤ C(K,L1, L2, L3, α− γ, β − γ)‖h1 − h2‖γ.

To justify this statement let us introduce Kγ : Hγ1 → H1 as Kγ(h)(t) := e−γth(t) and

g̃(t, x, u) := g(t, x, eγtu). Then

ẋ ∈ A(t)x+ f(t, x) + g̃(t, x,X1) (1.22)

fulfills trivially all the prerequisites of Theorem 1.18 (even the critical (1.19)). The

application of this theorem gives Γ∗γ(·, ·) : R × H1 → X the γ-q. b. solution operator

of (1.22). Returning to our original setting let us introduce Γ̂γ : R × Hγ1 → X as

Γ̂γ(t, h) := Γ∗γ(t,K(h)). Then the statement follows easily, for example the Lipschitz

property comes from

∥∥∥Γ̂γ(·, h1)− Γ̂γ(·, h2)
∥∥∥ =

∥∥Γ∗γ(·,K(h1))− Γ∗γ(·,K(h2))
∥∥

≤ C(K,L1, L2, L3, α− γ, β − γ)|K(h1)−K(h2)|∞

= C(K,L1, L2, L3, α− γ, β − γ)‖h1 − h2‖γ.

The conclusion of this remark is that if one insists on the natural Lipschitz condition

then its price has to be paid in a form of reducing our selector space.

It is clear that Theorem 1.7 under the assumptions of Theorem 1.18 implies that

the problem (1.11) is uniquely solvable on R corresponding to selector h ∈ H1 with

initial condition x(τ) = ξ. If we designate this solution by λ = λ(t, τ, ξ, h) then

λ : R × R × X × H1 → X is continuous. We will use the same notation λ also

for selectors defined only on R±τ , we are aware of the arising ambiguity, see the

discussion around (1.16).

Now we generalize Theorem 1.16. Suppose that all the conditions of Theorem
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(1.18) is fulfilled and let us introduce

Sγτ,ε := {Γγ(τ, h) : h ∈ Hε},

M s,γ
τ,ε := {ξ ∈ X : ∃h+ ∈ H+

τ,ε,∃h ∈ Hε, h
+ ⊂ h and

lim
t→∞
‖λ(t, τ, ξ, h+)− Γγ(t, h)‖ e−γt = 0},

Mu,γ
τ,ε := {ξ ∈ X : ∃h− ∈ H−τ,ε,∃h ∈ Hε, h

− ⊂ h and

lim
t→−∞

‖λ(t, τ, ξ, h−)− Γγ(t, h)‖ e−γt = 0}.

These notations might be somewhat misleading, note that the letters s, u no longer

refer to the stable and unstable case in a usual sense that is limt→±∞ ‖λ(t, τ, ξ, h±) −

Γγ(t, h)‖ = 0. It still has a reason to use M s,γ
τ,ε ,M

u,γ
τ,ε , firstly because it reveals the

connection between the theory of q. b. and bounded solutions. Secondly because in

an appropriate exponential rate s and u still refer to some asymptotic behavior.

Theorem 1.19. Suppose all the assumptions of Theorem 1.18 and fix τ ∈ R, ε ∈ [0, 1].

Then there are Lipschitz continuous functions

ws,γ : P+
τ × H+

τ,ε → P−τ , wu,γ : P−τ × H−τ,ε → P+
τ

such that

M s,γ
τ,ε = {ξ ∈ X : ∃h+ ∈ H+

τ,ε : ‖λ(·, τ, ξ, h+)‖+
τ,γ <∞}

= {ξ+ + ws,γ(ξ+, h) : ξ+ ∈ P+
τ , h ∈ H+

τ,ε},

Mu,γ
τ,ε = {ξ ∈ X : ∃h− ∈ H−τ,ε : ‖λ(·, τ, ξ, h−)‖−τ,γ <∞}

= {ξ− + wu,γ(ξ−, h), : ξ− ∈ P−τ , h ∈ H−τ,ε}.

Moreover we get exact Lipschitz bounds if we replace in (1.18) ws, wu, α, β by ws,γ, wu,γ,

α− γ, β − γ.

Proof. We present here the proof of the “stable” case, the other one is similar. We

follow the lines of the proof of Theorem 1.18 and we are going to use notations

therein. Denote by λ̃(·, τ, ξ, h) the solution of the transformed inclusion (1.20) on R

(resp. R±) with initial condition y(τ) = ξ. Theorem 1.16 for an appropriate function

w̃s : P+
τ × H+

τ,ε → P−τ (continuous and satisfying (1.18) where α, β are replaced by
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α− γ and β − γ) yields

{ξ ∈ X, ∃h+ ∈ H+
τ,ε,∃h ∈ Hε, h

+ ⊂ h, lim
t→∞
|λ̃(t, τ, ξ, h+)− Γ̃(t, h)| = 0} =

{ξ ∈ X, ∃h+ ∈ H+
τ,ε, |λ̃(t, τ, ξ, h+)|+τ <∞} =

{ξ+ + w̃s(ξ+, h+), ξ+ ∈ P+
τ , h

+ ∈ H+
τ,ε}.

This identity implies exactly the statement of the theorem. It is enough to set ws,γ :=

w̃s and to the relations λ̃ = λ e−γt and Γ̃ = Γγ e−γt. The proof is finished.

Remark 1.9. The theorem above has again a variant for the situation when (1.19)

is replaced by (1.21). Now it is straightforward how to achieve this, we will use

notations from Remark 1.8. Let us begin with new selector spaces

H±,γτ,ε := {h ∈ H±τ,ε : ‖h±‖±τ,γ <∞}.

Endowing H±,γτ,ε with metrics d±τ,γ(h1, h2) := ‖h1−h2‖±τ,γ they turn into complete met-

ric spaces.

This time we have to apply the fundamental Theorem 1.5 to get a continuous

λ̂ : R± × R × X × Hγε → X (or λ̂ : R±τ × R±τ × X × H±,γτ,ε → X with a same notation

λ̂) such that λ̂(·, τ, ξ, h) is a unique solution of ẋ = A(t)x + f(t, x) + g(t, x, h(t)) with

x(τ) = ξ on R (resp. R±τ ). Let us have K±γ : H±,γτ,ε → H±τ,ε the transformation given by

K±γ (h)(t) := e−γth(t).

Introduce

Ŝγτ,ε :=
{

Γ̂γ(τ, h) : h ∈ Hγε
}
,

M̂ s,γ
τ,ε :=

{
ξ ∈ X : ∃h+ ∈ H+,γ

τ,ε ,∃h ∈ Hγε , h
+ ⊂ h such that

lim
t→∞
‖λ(t, τ, ξ, h+)− Γ̂γ(t, h)‖ e−γt = 0

}
,

M̂u,γ
τ,ε :=

{
ξ ∈ X : ∃h− ∈ H−,γτ,ε ,∃h ∈ Hγε , h

− ⊂ h such that

lim
t→−∞

‖λ(t, τ, ξ, h−)− Γ̂γ(t, h)‖ e−γt = 0
}
,

For modified system (1.22) the Theorem 1.19 is applicable and gives functions

(w∗)s,γ, (w∗)u,γ with corresponding properties. Then for Lipschitz continuous func-
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tions

ŵs,γ : P+
τ × Hγ,+τ,ε → P−τ , ŵu,γ : P−τ × Hγ,−τ,ε → P+

τ

defined as

ŵs,γ(ξ+, h+) := (w∗)s,γ(ξ+,K+
γ (h+)), ŵu,γ(ξ−, h−) := (w∗)u,γ(ξ−,K−γ (h−))

we have

M̂ s,γ
τ,ε = {ξ ∈ X : ∃h+ ∈ H+,γ

τ,ε : ‖λ̂(·, τ, ξ, h+)‖+
τ,γ <∞}

= {ξ+ + ŵs,γ(ξ+, h+) : ξ+ ∈ P+
τ , h

+ ∈ H+,γ
τ,ε },

M̂u,γ
τ,ε = {ξ ∈ X : ∃h− ∈ H−,γτ,ε : ‖λ̂(·, τ, ξ, h−)‖−τ,γ <∞}

= {ξ− + ŵu,γ(ξ−, h−), : ξ− ∈ P−τ , h− ∈ H−,γτ,ε }.

The Lipschitz bounds – for instance in the “stable” case – follows from

∣∣ŵs,γ(ξ+
1 , h

+
1 )− ŵs,γ(ξ+

2 , h
+
2 )
∣∣ =

∣∣(w∗)s,γ(ξ+
1 ,K+

γ (h+
1 ))− (w∗)s,γ(ξ+

2 ,K+
γ (h+

2 ))
∣∣

≤ C̃|ξ+
1 − ξ+

2 |+ C|K+
γ (h+

1 )−K+
γ (h+

2 )|+τ = C̃|ξ+
1 − ξ+

2 |+ C‖h+
1 − h+

2 ‖+
τ,γ

where C̃ and C come from (1.18) as it is described in the formulation of Theorem

1.19.

1.2.3 Independence and Hierarchy

Now we change the topic and our following short investigations will be focused

on some interesting questions concerning the previously defined and characterized

notions. Without any pressure and efforts to be as complete as possible we rather

would like to make a starting point for possible further directions of research. We

show some results basically motivated by two questions:

Q1: Under which conditions are we able to prove the independence of Γγ on γ?

Q2: What relations should we expect between various integral manifolds descri-

bed in Subsection 1.2.2 if the linear part possesses exponential dichotomy on

R corresponding to more then one, properly linked projection?
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At first partial answer to the question Q1.

Theorem 1.20. Let us have α < α1 < β1 < β and functions

f : R×X → X, g : R×X ×X1 → X

such that

(i) Smoothness: f(·, x), g(·, x, u) : R → X are s. m. for all x ∈ X, u ∈ X1 and

f(t, ·) : X → X, g(t, ·, ·) : X ×X1 → X are continuous for all t ∈ R,

(ii) Upper bound: there are constants M1,M2 ≥ 0 such that

|f(t, 0)| ≤M1η(t), |g(t, 0, 0)| ≤M2η(t), t ∈ R,

where η(t) := min{ eα1t, eβ1t},

(iii) Lipschitz condition: there are constants L1, L2, L3 ≥ 0 such that

|f(t, x1)− f(t, x2)| ≤ L1|x1 − x2|,

|g(t, x1, u1)− g(t, x1, u2)| ≤ L2|x1 − x2|+ L3η(t)|u1 − u2|

are valid for all t ∈ R, x1, x2 ∈ X, u1, u2 ∈ X1,

(iv) for a constant θ := max
{
κα−α1,β−α1 , κα−β1,β−β1

}
we have K(L1 + L2)θ < 1.

Then Γγ from Theorem 1.18 is well-defined for γ ∈ [α1, β1] and independent from γ – that is

Γγ1 = Γγ2 for all γ1, γ2 ∈ [α1, β1].

Proof. We set |x|[α1,β1] := ‖x‖α1 + ‖x‖β1 for x ∈ C(R, X). The space

Y := {x ∈ C(R, X) : |x|[α1,β1] <∞}

become a Banach space with a norm | · |[α1,β1]. Define T : Y × H1 → Y formally as in

(1.14). Fix x ∈ Y, h ∈ H1 and introduce f̃(s) := f(s, x(s)) + g(s, x(s), h(s)). From our

assumptions we infer for γ ∈ {α1, β1} that

‖f̃‖γ ≤ (L1 + L2)‖x‖γ + L3|h|∞ + ‖f(·, 0)‖γ + ‖g(·, 0, 0)‖γ <∞.
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Hence Lemma 1.13 implies that T (x, h) is the unique γ-q. b. solution of ẏ = A(t)y+f̃ .

Using (1.9) (again for γ ∈ {α, β}) we get the well-definiteness of T . Moreover T is

continuous and also a uniform (in H1) contraction (on Y ), this follows from the easily

derivable estimations

|T (x, h1)− T (x, h2)|[α1,β1] ≤ KL3(κα−α1,β−α1 + κα−β1,β−β1)|h1 − h2|∞,

|T (x1, h)− T (x2, h)|[α1,β1] ≤ K(L1 + L2)θ|x1 − x2|[α1,β1].

Theorem 1.3 is applicable, it yields the unique fix point x of T (·, h) in the space Y

(note that x is a solution of the nonlinear problem ẏ = A(t)y + f(t, y) + g(t, y, h(t))).

Using the uniqueness property of Γγ from Theorem 1.18 and that for every y ∈ Y

and γ ∈ [α1, β1] we have ‖y‖γ < ∞ we infer that Γγ = x for all γ ∈ [α1, β1] and we

are done.

Note that in the spirit of the theorem above without any effort we should de-

velop γ-independent variants of Theorems 1.18, 1.19 and Remarks 1.8, 1.9. Because

it would be mechanical we do not present it and turn our attention to the question

Q2.

Let us have for i = 1, · · · , n, n ≥ 2, projections Pi ∈ B(X) (that is P 2
i = Pi) and

Ki ≥ 1, αi, βi, γi ∈ R. Suppose that

αi < γi < βi, i = 1, · · · , n and βi ≤ αi+1, i = 1, · · · , n− 1.

Set P+
i := Pi, P

−
i := I−Pi and assume the following hierarchy of the projector ranges

P+
i (X) ⊂ P+

i+1(X), P−i (X) ⊃ P−i+1(X), i = 1, · · · , n− 1. (1.23)

Now suppose A ∈ Eαi,βi(X) = Eαi,βi(X;Pi, Ki) that is

∣∣Φ(t, 0)P+
i Φ(0, s)

∣∣ ≤ Ki eαi(t−s), t ≥ s,∣∣Φ(t, 0)P−i Φ(0, s)
∣∣ ≤ Ki eβi(t−s), t ≤ s.

Introduce moreover η∗(t) := mini=1,··· ,n{ eγit} and θ∗ := maxi=1,··· ,n{καi−γi,βi−γi}. Un-

der these assumptions we can state the following theorem.
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Theorem 1.21. Let us have f : R×X → X, g : R×X ×X1 → X such that

(i) Smoothness: f(·, x), g(·, x, u) : R → X are s. m. for all x ∈ X, u ∈ X1 and

f(t, ·) : X → X, g(t, ·, ·) : X ×X1 → X are continuous for all t ∈ R,

(ii) Upper bound: there is a constants M ≥ 0 such that

|f(t, 0)| ≤Mη∗(t), |g(t, 0, 0)| ≤Mη∗(t), t ∈ R,

(iii) Lipschitz condition: there are constants L1, L2, L3 such that

|f(t, x1)− f(t, x2)| ≤ L1|x1 − x2|

|g(t, x1, u1)− g(t, x1, u2)| ≤ L2|x1 − x2|+ L3η
∗(t)|u1 − u2|

are valid for all t ∈ R, x1, x2 ∈ X, u1, u2 ∈ X1,

(iv) we have K(L1 + L2)θ∗ < 1.

Then Γγi ,M
s,γi
τ,ε ,M

u,γi
τ,ε from Theorems 1.18 , 1.19 concerning the inflated differential equa-

tion ẋ ∈ A(t)x + f(t, x) + g(t, x,X1) are well-defined and the following inherited (from

(1.23)) hierarchy is valid

M s,γi
τ,ε ⊂M s,γi+1

τ,ε , Mu,γi
τ,ε ⊃Mu,γi+1

τ,ε , i = 1, · · · , n− 1.

Proof. We present the proof of the “stable” variant. In fact the statement follows

immediately from (cf. Theorem 1.16)

M s,γi
τ,ε =

{
ξ ∈ X : ‖λ(·, τ, ξ, h)‖+

τ,γi
<∞

}
, i = 1, · · · , n

combined with an elementary fact

‖ · ‖+
τ,γi
≥ ‖ · ‖+

τ,γi+1
e(γi+1−γi)τ , i = 1, · · · , n− 1.

The proof is complete.

The hierarchy of integral manifolds for non-autonomous systems without infla-

tion and with a bit restrictive f(t, 0) = 0 was brilliantly presented in [3, 4].
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1.3 Remarks on Exponential Dichotomy of ODE

Here we would like to present simple criteria on hyperbolic exponential dichotomy

for linear systems. That is there are α < 0 < β such that A ∈ Eα,β(R). In this

section by exponential dichotomy we always mean this property. This section is

essentially independent from previous ones, hence there might be some duplicity

in notations which will be always clarified. We will use the following well-known

lemma (cf. [61]).

Lemma 1.22 (Neumann’s Inversion Lemma). Suppose that X is a Banach space and

A ∈ B(X) is invertible. Then for B ∈ B(X) such that |A−1B| < 1 we have (A + B)−1 ∈

B(X), and

(A+B)−1 =
∑
n≥0

(A−1B)nA−1,
∣∣(A+B)−1

∣∣ ≤ |A−1|
1− |A−1B|

.

This section is organized as follows. At first we focus on constant matrices

in finite and infinite dimensions. Then we give some results for countable non-

autonomous ODE’s regarding exponential dichotomy (these systems were exten-

sively studied in [7, 16, 54]).

1.3.1 Finite Dimensional Case

We consider on X = Cn the following standard norms (c.f. [41, 61])

|x|p := p
√
|x1|p + |x2|p + · · ·+ |xn|p , |x|∞ := max {|x1|, |x2|, · · · , |xn|} ,

where p ≥ 1 and x = (x1, x2, · · · , xn). The corresponding norms on B(Cn) are de-

noted by ‖ · ‖p and ‖ · ‖∞. We recall the following result [61]: If A = (aij)
n
i,j=1 ∈

Mn×n(C) then

‖A‖1 = max
1≤i≤n

(
n∑
j=1

|aji|

)
, ‖A‖2 =

√
max
1≤i≤n

λi
ĀTA

,

‖A‖∞ = max
1≤i≤n

(
n∑
j=1

|aij|

)
,


(1.24)

where λi
ĀTA

, i = 1, 2, · · · , n are eigenvalues of ĀTA.

33



Next, by using the Hölder inequality, for p > 1 we compute

|Ax|p = p

√√√√ n∑
i=1

∣∣∣∣∣
n∑
j=1

aijxj

∣∣∣∣∣
p

≤ p

√√√√ n∑
i=1

(
n∑
j=1

|aij|q
)p/q( n∑

j=1

|xj|p
)

= p

√√√√ n∑
i=1

(
n∑
j=1

|aij|q
)p/q

|x|p

for 1
p

+ 1
q

= 1, which gives

‖A‖p ≤ p

√√√√ n∑
i=1

(
n∑
j=1

|aij|q
)p/q

. (1.25)

Take λ ∈ C. In order to show the invertibility of Aλ := λI− A first we suppose that

aii 6= λ, ∀i = 1, 2, · · · , n , (1.26)

and then we consider the following modification of Aλ

Ãλ :=

(
λδij − aij
λ− aii

)n
i,j=1

, (1.27)

where

δij :=

 1, if i = j,

0, if i 6= j.

Now we decompose (1.27) as follows

Ãλ := I +Bλ , Bλ :=
(
bλij
)n
i,j=1

, bλij =
(δij − 1)aij
λ− aii

.

Note Aλ = DλÃλ for Dλ := diag (λ− a11, λ− a22, · · · , λ− ann). Clearly Aλ is invert-

ible if and only if Ãλ is invertible, and then A−1
λ = Ã−1

λ D−1
λ .

Now we have the following consequences of Lemma 1.22.

Theorem 1.23. Suppose (1.26) and set d := max1≤i≤n {|λ− aii|−1}. Then the following

statements hold
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1. If

η1 := max
1≤i≤n

{
n∑

j=1,j 6=i

|aji|
|λ− ajj|

}
< 1 , (1.28)

then Aλ is invertible and ‖A−1
λ ‖1 ≤ d

1−η1
.

2. If

η∞ := max
1≤i≤n

{∑n
j=1,j 6=i |aij|
|λ− aii|

}
< 1 , (1.29)

then Aλ is invertible and ‖A−1
λ ‖∞ ≤ d

1−η∞ .

3. If

τp :=
n∑
i=1

(∑n
j=1,j 6=i |aij|q

)p/q
|λ− aii|p

< 1 , (1.30)

for some p > 1, where 1
p

+ 1
q

= 1, then Aλ is invertible and ‖A−1
λ ‖p ≤ d

1− p
√
τp

.

Proof. From (1.24) and (1.25) we get in the light of the conditions (1.28), (1.29), (1.30)

that ‖Bλ‖p < 1 for any p ∈ [1,∞]. Neumann’s Lemma 1.22 implies

‖A−1
λ ‖p ≤ ‖D

−1
λ ‖p‖Ã

−1
λ ‖p ≤

‖D−1
λ ‖p

1− ‖Bλ‖p
.

Because of ‖D−1
λ ‖p ≤ d statements follow and the proof is finished.

Remark 1.10. a) For λ = 0, condition (1.28) is the Hadamard classical assumption on

invertibility of A (see [52]), but Hadamard ones have no estimates on the norm of

A−1. Further results on the invertibility of matrices are presented in [29].

b) Taking the transpose AT we get dual results of Theorem 1.23 which here we

do not present explicitly.

c) Taking opposite inequalities in the above conditions (1.28), (1.29) and (1.30),

we can localize the spectrum σ(A) by obtaining Geršgoring type sets [29, 66].

d) If<aii 6= 0 for all i = 1, 2, · · · , n then using |λ−aii| ≥ |<aii| for all i = 1, 2, · · · , n

and any λ ∈ C with <λ = 0 we see that A is hyperbolic, i.e., <σ(A) 6= 0, if one of the
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next assumptions holds

max
1≤i≤n

{
n∑

j=1,j 6=i

|aji|
|<ajj|

}
< 1 , max

1≤i≤n

{∑n
j=1,j 6=i |aij|
|<aii|

}
< 1 ,

n∑
i=1

(∑n
j=1,j 6=i |aij|q

)p/q
|<aii|p

< 1


(1.31)

for some p > 1 where 1
p

+ 1
q

= 1. Moreover, A has the same type of hyperbolicity as

diag (<a11,<a22, · · · ,<ann). This follows from the fact that all matrices

diag (<a11,<a22, · · · ,<ann) + ξ (A− diag (<a11,<a22, · · · ,<ann)) , ξ ∈ [0, 1]

are hyperbolic.

1.3.2 Infinite Dimensional Case

Let us introduce for p ∈ [1,∞] the well-known `p Banach spaces

`p :=
{
x = {xi}i∈Z : xi ∈ C, |x|p <∞

}
,

|x|p := p

√∑
i∈Z

|xi|p, p ∈ [1,∞), |x|∞ := sup
i∈Z
|xi|.

We deal with infinite dimensional matrices of the form

(Bx)i =
i+s∑
j=i−s

bijxj, i ∈ Z

for s ∈ N and a bounded sequence {bij}|j−i|≤si,j∈Z , where x = {xi}i∈Z ∈ `p. Then we

easily derive (as we obtained (1.24))

|Bx|1 =
∑
i∈Z

|(Bx)i| ≤

(
sup
i∈Z

i+s∑
j=i−s

|bji|

)
|x|1,

|Bx|∞ = sup
i∈Z
|(Bx)i| ≤

(
sup
i∈Z

i+s∑
j=i−s

|bij|

)
|x|∞,

|Bx|p = p

√∑
i∈Z

|(Bx)i|p ≤ p

√√√√√sup
i∈Z

i+s∑
k=i−s

(
k+s∑
j=k−s

|bkj|q
)p/q

|x|p
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for p > 1 and 1
p

+ 1
q

= 1. These results rely on similar tricks therefore we show only

the third, the most complicated one. Let us have an element x ∈ `p such that there

is l ∈ N with xi = 0 if i ∈ Z \ {−l,−l + 1, · · · , l − 1, l}. Then

|Bx|p = p

√∑
i∈Z

|(Bx)i|p = p

√√√√∑
i∈Z

∣∣∣∣∣
i+s∑
j=i−s

bijxj

∣∣∣∣∣
p

= p

√√√√ l+s∑
i=l−s

∣∣∣∣∣
i+s∑
j=i−s

bijxj

∣∣∣∣∣
p

because for i, j ∈ Z conditions |i− l| > s, |i− j| ≤ s imply |j− l| ≥ |i− l| − |i− j| > 0

hence xj = 0. Further from Hölder inequality we have

|Bx|p ≤
p

√√√√√ l+s∑
i=l−s

(
i+s∑
j=i−s

|bij|q
) p

q l+s∑
i=l−s

|xj|p ≤
p

√√√√√sup
k∈Z

k+s∑
i=k−s

(
i+s∑
j=i−s

|bij|q
) p

q

|x|p.

Note that in the last term the coefficient before |x|p is independent on l. Now the

density of the set of these x-es in `p implies the desired upper bound (some relabel-

ing of indexes is also needed).

Let us take a matrix

(Ax)i =
i+s∑
j=i−s

aijxj, i ∈ Z (1.32)

for s ∈ N and a bounded sequence {aij}|j−i|≤si,j∈Z . Take λ ∈ C with

inf
i∈Z
|λ− aii| = ω > 0, (1.33)

introduce Aλ := I− λA and also Ãλ, Bλ, Dλ corresponding to sequences
{
ãλij
}|i−j|≤s
i,j∈Z ,{

bλij
}|i−j|≤s
i,j∈Z and

{
dλi
}
i∈Z (Dλ is a diagonal infinite matrix) defined as

ãλij :=
δijλ− aij
λ− aii

, bλij :=
(δij − 1)aij
λ− aij

, dλi := λ− aii.

Then Aλ = DλÃλ, Ãλ = I + Bλ and we arrive at the following extension of Theorem

1.23 to infinite matrices.

Theorem 1.24. Suppose (1.33) then the following statements hold

1. If

η1 := sup
i∈Z

j=i+s∑
j=i−s,j 6=i

|aji|
|λ− ajj|

< 1 , (1.34)
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then Aλ is invertible in `1 and ‖A−1
λ ‖1 ≤ (ω(1− η1))−1.

2. If

η∞ := sup
i∈Z

i+s∑
j=i−s,j 6=i

|aij|
|λ− aii|

< 1 , (1.35)

then Aλ is invertible in `∞ and ‖A−1
λ ‖∞ ≤ (ω(1− η∞))−1.

3. If

τp := sup
i∈Z

i+s∑
k=i−s

(∑k+s
j=k−s,j 6=k |akj|q

)p/q
|λ− akk|p

< 1 , (1.36)

for some p ∈ (1,∞), where 1
p

+ 1
q

= 1, then Aλ is invertible in `p and

‖A−1
λ ‖p ≤

(
ω(1− p

√
τp)
)−1

.

Proof. The idea is the same as the proof of Theorem 1.23. Formally the only differ-

ence is that ‖D−1
λ ‖p ≤ 1/ω.

Remark 1.11. Assuming infi∈Z |<aii| > 0 we infer that A is hyperbolic

in `1 if sup
i∈Z

i+s∑
j=i−s,j 6=i

|aji|
|<ajj|

< 1 , in `∞ if sup
i∈Z

∑i+s
j=i−s,j 6=i |aij|
|<aii|

< 1 ,

in `p if sup
i∈Z

i+s∑
k=i−s

(∑k+s
j=k−s,j 6=k |akj|q

)p/q
|<akk|p

< 1 ,

(1.37)

for some p > 1 where 1
p

+ 1
q

= 1. It is enough to use Theorem 1.24 for λ ∈ C such

that <λ = 0 and note that then |λ − aii| ≥ |<aii|. Moreover, A has the same type of

hyperbolicity as diag (<aii)i∈Z.

Note that these results are the direct consequences of the previous subsection.

More sophisticated results are presented in [62, 65] on spectra of infinite matrices.

1.3.3 Periodic ODE’s

Consider a first order T -periodic ODE

ẋ = A(t)x (1.38)

38



with

(A(t)x)i =
i+s∑
j=i−s

aij(t)xj, i ∈ Z,

for s ∈ N and a uniformly bounded sequence {aij(t)}|j−i|≤si,j∈Z of T -periodic continuous

functions. First we suppose that

lim
i→±∞

ai,i+k(t) = a±k (t), ∀k ∈ {−s,−s+ 1, · · · , s− 1, s} (1.39)

uniformly on [0, T ]. Then we set

(A∞(t)x)i =


∑i+s

j=i−s a
+
j−i(t)xj, i ≥ 0,∑i+s

j=i−s a
−
j−i(t)xj, i < 0,

It is an easy exercise to verify that C(t) := A(t) − A∞(t) are compact in any `p,

p ∈ [1,∞] for all t ∈ [0, T ] (T ∈ B(X, Y ) is compact if the closure T (M) is compact

in Y for arbitrary bounded M ⊂ X). The fundamental matrix solution X (t) of (1.38)

has the form

X (t) = X∞(t) +

∫ t

0

X∞(t)
(
X∞(z)

)−1
C(z)X (z)dz,

whereX∞ is the fundamental matrix solution of ẋ = A∞(t)x (this is a consequence of

(1.4), because Y (t) = X (t) is a matrix solution of the linear equation Ẏ = A∞(t)Y +

C(t)X (t)). Hence X (T ) − X∞(T ) is compact and so σess(X (T )) = σess(X∞(T )) (the

essential spectrum σess(T ) of T ∈ B(X) is not uniquely defined in the literature, one

can find various definitions [20, p. 40], we follow the most general one

σess(T ) := {λ ∈ C : λI− T is not Fredholm }

= {λ ∈ C : dim(Ker(λI− T ) =∞ or codim(R(λI− T )) =∞} .

The fundamental fact is that σess(·) is invariant under the compact perturbations,

that is σess(T + C) = σ(T ) for any compact C ∈ B(X), c.f. [20, Theorem 4.1, p. 40]).

Then for instance, if X∞(t) = 0 then X (T ) is a compact perturbation of I.

We recall [15, Theorem 2.1, p. 203] that (1.38) has an exponential dichotomy on

R if and only if σ(X(T ))∩ S1 = ∅ for the unit circle S1 in C. This is equivalent to say
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that the inhomogeneous system

ẋ = A(t)x+ h(t) (1.40)

has a unique bounded solution on R for any bounded continuous h ∈ Cb(R, X) (here

X is a complex Banach space, namely one of the `p spaces for p ∈ [1,∞]). Now we

rewrite (1.40) as a system

ẋi = aii(t)xi +
i+s∑

j=i−s,j 6=i

aij(t)xj + hi(t), i ∈ Z (1.41)

for h(t) = {hi(t)}i∈Z. We suppose

ω := inf
i∈Z,t∈R

|<aii(t)| > 0. (1.42)

We want to find criteria that (1.41) has a unique bounded solution on R. For this

purpose, we rewrite it as

xi(t) =

∫ t

ai∞
eAi(t,z)

i+s∑
j=i−s,j 6=i

aij(z)xj(z)dz +

∫ t

ai∞
eAi(t,z)hi(z)dz, i ∈ Z,

where ai := sign<aii(t) and Ai(t, z) :=
∫ t
z
aii(u)du. Note |<Ai(t, z)| ≥ ω|t− z|.

Then for x, h ∈ Cb(R, `∞) we derive

|xi(t)| ≤ sup
i∈Z,z∈R

i+s∑
j=i−s,j 6=i

|aij(z)|
|<aii(z)|

(
−ai

∫ t

ai∞
|<aii(z)| e<Ai(t,z)dz

)
|x|∞

+ |h|∞(−ai)
∫ t

ai∞
eaiω(t−z)dz

= sup
i∈Z,z∈R

i+s∑
j=i−s,j 6=i

|aij(z)|
|<aii(z)|

|x|∞ +
|h|∞
ω

.

Consequently, if

sup
i∈Z,z∈R

i+s∑
j=i−s,j 6=i

|aij(z)|
|<aii(z)|

< 1

then (1.40) has a unique solution x ∈ Cb(R, `∞) for any h ∈ Cb(R, `∞), and thus (1.38)

has an exponential dichotomy on `∞.
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Similarly for x, h ∈ Cb(R, `1) we derive

|x(t)|1 =
∑
i∈Z

|xi(t)| ≤
∑
i∈Z

−ai
∫ t

ai∞
eaiω(t−z)

i+s∑
j=i−s,j 6=i

|aij(z)||xj(z)|dz

+
∑
i∈Z

−ai
∫ t

ai∞
eaiω(t−z)|hi(z)|dz

=
∑
j∈Z

j+s∑
i=j−s,i 6=j

−ai
∫ t

ai∞
eaiω(t−z)|aij(z)||xj(z)|dz +

∑
i∈Z

−ai
∫ t

ai∞
eaiω(t−z)|hi(z)|dz

=
∑
j∈Z

 ai=−1∑
0<|i−j|≤s

∫ t

−∞
e−ω(t−z)|aij(z)||xj(z)|dz +

ai=1∑
0<|i−j|≤s

∫ ∞
t

eω(t−z)|aij(z)||xj(z)|dz


+

ai=−1∑
i∈Z

∫ t

−∞
e−ω(t−z)|hi(z)|dz +

ai=1∑
i∈Z

∫ ∞
t

eω(t−z)|hi(z)|dz

≤
sup
j∈Z

(
sup
z∈R

ai=−1∑
0<|i−j|≤s

|aij(z)|+ sup
z∈R

ai=1∑
0<|i−j|≤s

|aij(z)|

)
ω

|x|∞ +
2|h|∞
ω

,

which implies

|x|∞ ≤
supj∈Z

(
supz∈R

ai=−1∑
0<|i−j|≤s

|aij(z)|+ supz∈R
ai=1∑

0<|i−j|≤s
|aij(z)|

)
ω

|x|∞ +
2|h|∞
ω

.

Consequently, if

sup
j∈Z

sup
z∈R

ai=−1∑
0<|i−j|≤s

|aij(z)|+ sup
z∈R

ai=1∑
0<|i−j|≤s

|aij(z)|

 < ω

then (1.40) has a unique solution x ∈ Cb(R, `1) for any h ∈ Cb(R, `1), and thus (1.38)

has an exponential dichotomy on `1.
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Finally for x, h ∈ Cb(R, `p), p ∈ (1,∞) we derive

|x(t)|p = p

√√√√∑
i∈Z

∣∣∣∣∣−ai
∫ t

ai∞
eAi(t,s)

i+s∑
j=i−s,j 6=i

|aij(z)|xj(z)dz − ai
∫ t

ai∞
eAi(t,z)hi(z)dz

∣∣∣∣∣
p

≤ p

√√√√∑
i∈Z

∣∣∣∣∣
∫ t

ai∞
eaiω(t−z)

i+s∑
j=i−s,j 6=i

|aij(z)||xj(z)|dz

∣∣∣∣∣
p

+ p

√√√√∑
i∈Z

∣∣∣∣∫ t

ai∞
eaiω(t−z)|hi(z)|dz

∣∣∣∣p

≤ p

√√√√√∑
i∈Z

∣∣∣∣∣∣
∫ t

ai∞
eaiω(t−z) q

√√√√ i+s∑
j=i−s,j 6=i

|aij(z)|q p

√√√√ i+s∑
j=i−s,j 6=i

|xj(z)|pdz

∣∣∣∣∣∣
p

+ p

√√√√∑
i∈Z

∣∣∣∣∫ t

ai∞
eaiω(t−z)dz

∣∣∣∣p/q ∣∣∣∣∫ t

ai∞
eaiω(t−z)|hi(z)|pdz

∣∣∣∣
≤

∑
i∈Z

∣∣∣∣∣
∫ t

ai∞
eaiω(t−z)dz

∣∣∣∣∣
p/q

·

∣∣∣∣∣∣
∫ t

ai∞
eaiω(t−z)

(
i+s∑

j=i−s,j 6=i

|aij(z)|q
)p/q( i+s∑

j=i−s,j 6=i

|xj(z)|p
)

dz

∣∣∣∣∣∣


1/p

+
q

√
1

ω
p

√√√√ai=−1∑
i∈Z

∫ t

−∞
e−ω(t−z)|hi(z)|pdz +

ai=1∑
i∈Z

∫ ∞
t

eω(t−z)|hi(z)|pdz

≤ q

√
1

ω

(∑
j∈Z

∫ t

−∞
e−ω(t−z)

ai=−1∑
0<|i−j|≤s

(
i+s∑

k=i−s,k 6=i

|aik(z)|q
)p/q

|xj(z)|pdz

+
∑
j∈Z

∫ ∞
t

eω(t−z)
ai=1∑

0<|i−j|≤s

(
i+s∑

k=i−s,k 6=i

|aik(z)|q
)p/q

|xj(z)|pdz

)1/p

+
p
√

2

ω
|h|∞

≤ 1

ω

(
sup

j∈Z,z∈R

ai=−1∑
0<|i−j|≤s

(
i+s∑

k=i−s,k 6=i

|aik(z)|q
)p/q

+ sup
j∈Z,z∈R

ai=1∑
0<|i−j|≤s

(
i+s∑

k=i−s,k 6=i

|aik(z)|q
)p/q)1/p

|x|∞ +
p
√

2

ω
|h|∞.

Consequently, if

sup
j∈Z,z∈R

ai=−1∑
0<|i−j|≤s

(
i+s∑

k=i−s,k 6=i

|aik(z)|q
)p/q

+ sup
j∈Z,z∈R

ai=1∑
0<|i−j|≤s

(
i+s∑

k=i−s,k 6=i

|aik(z)|q
)p/q

< ωp
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then (1.40) has a unique solution x ∈ Cb(R, `p) for any h ∈ Cb(R, `p), and thus (1.38)

has an exponential dichotomy on `p (note that in the above computations |x|∞ =

supt∈R |x(t)|p strongly depends on p ∈ [1,∞]).

Finally we consider a second-order ODE

ẍ = A(t)x (1.43)

with

(A(t)x)i =
i+s∑
j=i−s

aij(t)xj, i ∈ Z

for s ∈ N and a uniformly bounded sequence {aij(t)}|j−i|≤si,j∈Z of T -periodic continuous

functions. We say that this equation possesses an exponential dichotomy on R –

generally on a suitable Banach space X – if the corresponding first order system

d

dt

 x

y

 =

 0 IX
A(t) 0

 x

y


is exponentially dichotomous on X ×X . By following [15, Theorem 5.1 p. 32, The-

orem 2.4 p. 208] we know that (1.43) on the Hilbert space X = `2 possess an ex-

ponential dichotomy on R if σ(R(t)) > 0 for any t ∈ R where R(t) := <A(t) =

1
2
(A(t) + A∗(t)), A∗(t) is the adjoint of A(t) (defined through (Ax, y) = (x,A∗y)) and

σ(R(t)) > 0 means <λ > 0,∀λ ∈ σ(R(t)), t ∈ R. It is an easy computation to show

(R(t)x)i =
i+s∑
j=i−s

rijxj, i ∈ Z,

rij(t) :=
1

2
(aij(t) + aji(t)), t ∈ R, i, j ∈ Z, |i− j| ≤ s.

Let us suppose in the light of (1.33) that

inf
i∈Z

rii = inf
i∈Z
<aii > 0.

Using Theorem 1.24 (the third part with p = 2) for λ ∈ C,<λ ≤ 0 (noting that
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|λ− rii| ≥ <rii = <aii) we get that if

sup
i∈Z

i+s∑
k=i−s

∑k+s
j=k−s,j 6=k |(akj(t) + ajk(t))/2|2

<akk(t)2
< 1

then σ(R(t)) > 0, t ∈ R and hence (1.43) is exponentially dichotomous on R.
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Chapter 2

Discretization of Poincaré map

2.1 General Settings and Tools

Assumptions made here are going to be valid for the whole chapter. Let us have

f ∈ C3(RN), N ∈ N \ {1} such that

ϕ : R× RN → RN is the global flow of ẋ = f(x).

For a numerical scheme ψ : [0, h0] × RN → RN , h0 ∈ (0, 1) suppose for some p ∈ N

that

ψ(h, x) = ϕ(h, x) + Υ(h, x)hp+1. (2.1)

Assume again ψ,Υ ∈ C3([0, h0]×RN ,RN). Some technical reasons cause that we are

forced to assume also p ≥ 2 (see below Remark 2.2 for more details).

Let γ(s) := ϕ(s, ξ0) be a 1-periodic solution for fixed ξ0 ∈ RN . Then there is a

system {ei(s)}N−1
i=1 of vectors in RN for any s ∈ R such that

ei ∈ C3(R,RN), ei(s+ 1) = ei(s),

〈ei(s), ej(s)〉 = δij, 〈ei(s), f(γ(s))〉 = 0,

 (2.2)

where i, j ∈ {1, · · · , N − 1}, δij is a Kronecker’s delta and 〈·, ·〉 is the standard Eu-

clidean scalar product. Introduce an N × (N − 1) matrix E(s) = [e1, · · · , eN−1]

(i-th column is ei, i = 1, · · · , N − 1). Let us set also a tubular coordinate func-

tion ξ(s, c) := γ(s) + E(s)c for s ∈ R, c ∈ RN−1. For standard euclidian norm
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|c|2 :=
√
〈c, c〉 note that |E(s)c|2 = |c|2, c ∈ RN−1. For δ > 0 introduce the notation

Bδ
N−1 :=

{
c ∈ RN−1 : |c|2 < δ

}
. Using the implicit function theorem finite number

of times we get that there is a δtr > 0 such that

ξ : [0, 1)×Bδtr
N−1 → RN is a C3–transformation,

in other words ξ|
[0,1)×Bδtr

N−1
is a C3–diffeomorphism between its domain and range

(cf. the moving orthonormal system along γ in [32, Chapter VI.I., p. 214-219]) . For

values

h ∈ [0, h0], s ∈ R, c ∈ RN−1, ∆ ∈ [0, h0],

X := (x1, x2, · · · , xm−1) ∈ RN(m−1), xi ∈ RN , m ∈ N, m ≥ 4,

define the following useful functions

Fm(h, s, c,X,∆) :=(Gm(h, s, c,X), Hm(h, s, c,X,∆)),

Gm(h, s, c,X) :=
(
ψ(h, ξ(s, c))− x1, ψ(h, x1)− x2, ψ(h, x2)− x3,

· · · , ψ(h, xm−2)− xm−1
)
,

Hm(h, s, c,X,∆) :=
〈
ψ
(
∆, xm−1

)
− γ(s), f(γ(s))

〉
.

X̄m :=X̄m(h, s, c) :=
(
x̄1, x̄2, · · · , x̄m−1

)
,

x̄j :=x̄j(h, s, c) := ϕ(jh, ξ(s, c)), j = 1, 2, · · · ,m− 1.

Further let B be a compact set such that γ(R) is contained in the interior of B.

Hence there is a constant R > 0 such that

{
x ∈ RN : min

s∈R
{|x− γ(s)|} ≤ R

}
⊂ B. (2.3)

We mean by | · | the standard maximum norm |v| := max{|vi| : i = 1, · · · , l} for

v ∈ Rl, l ∈ N. Notation| · | is used also for linear operators A : Rl1 → Rl2 defined

as |A| := maxv∈Rl1 ,|v|=1 |Av|. An open ball in a Banach space X will be denoted as

B(x, %) := {y ∈ X : |y − x| < %} for any x ∈ X and % > 0.

Several times we will use Lemma 1.22 from the previous chapter. Our central

tool will be the following lemma, because of it importance and for the sake of com-
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pleteness we give also a short proof.

Lemma 2.1 (Newton–Kantorovich method). Let us have Banach spaces X, Y, Z and

open nonempty sets U ⊂ X, V ⊂ Y. Let ȳ : U → V be any function such that

B(ȳ(x), %) ⊂ V for every x ∈ U and for some % > 0.

Let us have a function F ∈ Cr(U × V, Z) for r ≥ 1. Suppose that

DyF (x, ȳ(x))−1 ∈ B(Z, Y ),

|F (x, ȳ(x))| ≤ α, |DyF (x, ȳ(x))−1| ≤ β

for every x ∈ U and for some α, β > 0. Let

|DyF (x, y1)−DyF (x, y2)| ≤ l|y1 − y2|, x ∈ U, y1, y2 ∈ B(ȳ(x), %) (2.4)

hold for some l ≥ 0. For constants α, β, l, % finally suppose

βl% < 1, (2.5)

αβ < %(1− βl%). (2.6)

Then there is a unique function y : U → V such that

|y(x)− ȳ(x)|Y ≤ % and F (x, y(x)) = 0 for all x ∈ U.

Moreover

|y(x)− ȳ(x)| < %, DyF (x, y(x))−1 ∈ B(Z, Y )

for all x ∈ U with an estimate

∣∣DyF (x, y(x))−1
∣∣ ≤ β

1− βl%
.

We get also y ∈ Cr(U, V ) if we additionally assume the continuity of ȳ.
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Proof. We transform the task to the fixed point problem of the mapping

G(x, y) := y − [DyF (x, ȳ(x))]−1F (x, y).

Choose an arbitrary x ∈ U. For y1, y2 ∈ B(ȳ(x), %) we have

|G(x, y1)−G(x, y2)| =
∣∣y1 − y2 −DyF (x, ȳ(x))−1(F (x, y1)− F (x, y2))

∣∣
≤ β

∣∣∣∣∫ 1

0

[DyF (x, ȳ(x))−DyF (x, y2 + s(y1 − y2))] (y1 − y2)ds

∣∣∣∣
≤ βl

∫ 1

0

|y2 + s(y1 − y2)| |y1 − y2|ds ≤ βl%|y1 − y2|

where we used y2 + s(y1 − y2) ∈ B(ȳ(x), %) which is caused by the convexity of the

closed ball B(ȳ(x), %).

On the other hand |G(x, ȳ(x))− ȳ(x)| ≤ βα < %(1−βl%) (cf. (2.6)) implies for any

y ∈ B(ȳ(x), %) that

|G(x, y)− ȳ(x)| ≤|G(x, y)−G(x, ȳ(x))|+ |G(x, ȳ(x))− ȳ(x)|

<βl%|y − ȳ(x)|+ %(1− βl%) ≤ βl%2 + %(1− βl%) = %

therefore G(x, ·) : B(ȳ(x), %) → B(ȳ(x), %) ⊂ B(ȳ(x), %) and it is a contraction (from

(2.5)). Banach’s Theorem yields a unique fixed point y(x) ∈ B(ȳ(x), %) of this map-

ping which lies in B(ȳ(x), %).

Now because of

DyF (x, y(x)) = DyF (x, ȳ(x)) +DyF (x, y(x))−DyF (x, ȳ(x))

= DyF (x, ȳ(x))
[
I +DyF (x, ȳ(x))−1 (DyF (x, y(x))−DyF (x, ȳ(x)))

]
and ∣∣DyF (x, ȳ(x))−1 (DyF (x, y(x))−DyF (x, ȳ(x)))

∣∣ ≤ βl% < 1
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we get from Lemma 1.22 that DyF (x, y(x)) is invertible with

∣∣DyF (x, y(x))−1
∣∣ ≤ |DyF (x, ȳ(x))−1|

1− |DyF (x, ȳ(x))−1(DyF (x, y(x))−DyF (x, ȳ(x))|

≤ β

1− βl%
.

Now we show Cr–smoothness. Choose any x0 ∈ U and let y0 := y(x0). From the

results above we have F (x0, y0) = 0 and that DyF (x0, y0) is continuously invert-

ible. Implicit Function Theorem yields a unique function y? ∈ Cr(U ′, V ′) such that

F (x, y) = 0 holds for (x, y) ∈ U ′ × V ′ if and only if y = y?(x). Here U ′, V ′ are suffi-

ciently small open sets with properties

x0 ∈ U ′ ⊂ U, y0 ∈ V ′ ⊂ B(ȳ(x0), %).

Next

|y?(x)− ȳ(x)| ≤ |y?(x)− y0|+ |y0 − ȳ(x0)|+ |ȳ(x0)− ȳ(x)|.

Here the second term is< % and other two terms are arbitrary small if x is sufficiently

close to x0 (because of the continuity of y? and ȳ at x0). Therefore we have an open

set U ′′ such that x0 ∈ U ′′ ⊂ U ′ and for which |y?(x) − ȳ(x)| < % for every x ∈ U ′′.

The uniqueness of the first part of this proof ensures that y = y? on U ′′, so y|U ′′ ∈

Cr(U ′′, V ). Because x0 was chosen arbitrarily in U we get also y ∈ Cr(U, V ) and the

proof is finished.
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2.2 Numerical Poincaré Map

At first as a basis for further investigation we state a lemma about the global Poin-

caré map for the continuous dynamical systems.

Lemma 2.2 (Poincaré’s time return map). There is an ε? ∈ (0, 1/2) such that for every

ε ∈ (0, ε?] there is δre = δre(ε) ∈ (0, δtr] and a C3–function

τ : R×Bδre(ε)
N−1 → (1− ε, 1 + ε)

such that for t ∈ (1− ε, 1 + ε), s ∈ R and c ∈ Bδre(ε)
N−1 we have

z(t, s, c) = 0 for z(t, s, c) := 〈ϕ(t, ξ(s, c))− γ(s), f(γ(s))〉 (2.7)

if and only if t = τ(s, c). In addition τ(s+ 1, ·) = τ(s, ·), s ∈ R.

Proof. The C3–smoothness of z : R× R× RN−1 → R is straightforward. It is easy to

see that

z(1, s, 0) = 0 and Dtz(t, s, c)|t=1,c=0 = |f(γ(s))|22 6= 0.

From the Implicit Function Theorem we get for all s′ ∈ [0, 1] numbers δ(s′) >

0, η(s′) > 0, ε(s′) ∈ (0, 1/2) and C3–smooth implicit functions

τ s
′
: (s′ − η(s′), s′ + η(s′))×Bδ(s′)

N−1 → (1− ε(s′), 1 + ε(s′))

determined uniquely by the equation (2.7) for

(t, s, c) ∈ (1− ε(s′), 1 + ε(s′))× (s′ − η(s′), s′ + η(s′))×Bδ(s′)
N−1.

Now
⋃
s′∈[0,1]

(
s′ − η(s′)/2, s′ + η(s′)/2

)
⊃ [0, 1] so we can choose finite number of

elements 0 ≤ s1 ≤ · · · ≤ sk ≤ 1 such that
⋃k
i=1

(
si − η(si)/2, si + η(si)/2

)
⊃ [0, 1].

Introduce

δ := min{δtr, min
i=1,··· ,k

{δ(si)}} and ε? := min
i=1,··· ,k

{ε(si)}.

Now τ si(s, 0) = 1 together with uniform continuity of τ si on [si − η(si)/2, si +

η(si)/2] × B
δ/2
N−1 implies that for every ε ∈ (0, ε?] there is a δre = δre(ε) ∈ (0, δ/2]
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such that

τ si(s, c) ∈ (1− ε, 1 + ε)

for all i = 1, · · · , k, s ∈
(
si− η(si)/2, si + η(si)/2

)
and c ∈ Bδre(ε)

N−1 . Therefore τ : [0, 1]×

B
δre(ε)
N−1 → (1−ε, 1+ε) can be defined by functions τ si naturally as follows, for s ∈ [0, 1]

choose any si such that s ∈
(
si − η(si)/2, si + η(si)/2

)
then set τ(s, ·) := τ si(s, ·)

(equality of τ si and τ sj on the intersection of their domains comes from τ si(s, 0) =

1 = τ sj(s, 0) and the Implicit Function Theorem – so τ is well-defined).

Because the determining equation (2.7) is 1−periodic in s we can easily extend τ

to become a function R×Bδre(ε)
N−1 → (1−ε, 1+ε) which is 1-periodic in the first variable

by the identity τ(s+ k, c) := τ(s, c), k ∈ Z, s ∈ [0, 1]. The proof is complete.

In this context the usual Poincaré map is defined as

P(s, c) := ϕ(τ(s, c), ξ(s, c)).

Further for admissible values of (h, s, c) using τ from the above lemma introduce

∆̄m := ∆̄m(h, s, c) := τ(s, c)− (m− 1)h.

To get the exact meaning of Pm mentioned informally in the introduction we

have to solve the equation Fm(h, s, c,X,∆) = 0 near (X̄, ∆̄). Here comes the first

application of Lemma 2.1. Before this let us introduce some technicalities, at first
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the following positive constants

CΥ ≥ max
h∈[0,h0], x∈B,
k∈{0,1,2,3}

{
|D[k]Υ(h, x)|

}
,

Cϕ ≥ max

{
max

h∈[0,h0], x∈B,
k∈{1,2,3}

{
|D[k]ϕ(h, x)|},

max
h∈[0,3/2]

{
|ϕ′x(h, x)|

}
, max
h∈[0,h0]

{
|ϕ[4]
txxx(h, x)|

}}
,

Cmin ≤ min
x∈γ(R)

{|f(x)|22},

Cτ ≥ max
s∈[0,1], k∈{1,2},
c∈Bδre(ε?)/2

N−1

{
|D[k]τ(s, c)|

}
,

CE ≥ max{|E ′(s)|, s ∈ [0, 1]},

Cψ ≥ max
h∈[0,h0], x∈B
k∈{1,2,3}

{
|D[k]ψ(h, x)|

}
.



(2.8)

Here D[k] is the k-th Fréchet differential. Note that an upper bound of a type Cψ

could be given simply using (2.1) and constants Cϕ,CΥ. Next, let us have δ > 0, µ ∈

(0, 1) and introduce

dm := dm(p, δ, µ) :=
µ− Cτ δ

mp−1

m(m− 1)
,

for

m ≥ m0(p, δ, µ) := max

{⌈
2

h0

⌉
,

⌈(
δ

δre(ε?)

)1/p
⌉
,

⌊(
Cτδ

µ

) 1
p−1

⌋
+ 1

}
,

where dxe := min{k ∈ Z : k ≥ x} and bxc := −d−xe for any x ∈ R. Further

Im := Im(p, δ, µ) :=

(
1

m
− dm,

1

m
+ dm

)
,

Bm := Bm(p, δ) := B
δ/mp

N−1 ,

Hm := Hm(p, δ, µ) := Im × R× Bm,


(2.9)

also for m ≥ m0.

The simple goal of these complicated assumptions is that for (h, s, c) ∈ Hm it is

straightforward to show

dm > 0, Im ⊂ (0, h0], c ∈ Bδre(ε?)
N−1 ,
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and
1− µ
m

< ∆̄m <
1 + µ

m
. (2.10)

Theorem 2.3. Choose any constants CX ,C∆ such that

CX > CX := CϕCΥ, C∆ > C∆ :=
NC3

ϕCΥ

Cmin

, (2.11)

Fix δ > 0, then for every m large, µ small enough and (h, s, c) ∈ Hm(p, δ, µ) there exists a

unique pair (Xm,∆m) = (Xm(h, s, c),∆m(h, s, c)) such that

F (Xm,∆m) = Fm(h, s, c,Xm(h, s, c),∆m(h, s, c)) = 0

and

|Xm − X̄m| < CX/m
p, |∆m − ∆̄m| < C∆/m

p. (2.12)

Moreover the functions Xm,∆m are C3–smooth in its arguments and

(Xm,∆m)(h, s+ 1, c) = (Xm,∆m)(h, s, c), (h, s, c) ∈ Hm. (2.13)

Proof. The proof is divided into several steps. Two main parts are the following

ones:

Part 1. The solution Xm close to X̄m of Gm(h, s, c,X) = 0 is found.

Part 2. We solve Hm(h, s, c,Xm(h, s, c),∆) = 0 for ∆ near ∆̄m.

These parts are handled using Lemma 2.1 and contain four steps.

Step 1.1. We show that

|Gm(h, s, c, X̄m)| ≤ CΥh
p+1 (2.14)

is valid for all (h, s, c) ∈ Hm and m large enough. From (2.1) we have for j =

1, · · · ,m− 1 if m is large enough that

|(Gm(h, s, c, X̄m))j| = |(ψ(h, x̄j−1)− ϕ(h, x̄j−1))|

≤ hp+1|Υ(h, x̄j−1)| ≤ CΥh
p+1
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where x̄0 := ξ(s, c). Indeed, noting that

δ/mp ≤ min{R/Cϕ, δre(ε
?)/2}, and jh ≤ (m− 1)

(
1

m
+ dm

)
≤ 3

2

are valid for m large enough using (2.8) we get that

|x̄j − γ(jh+ s)| =
∣∣∣∣∫ 1

0

ϕ′x(jh, γ(s) + ϑE(s)c)E(s)c dϑ

∣∣∣∣
≤ Cϕ|E(s)c| ≤ Cϕ|E(s)c|2 = Cϕ|c|2 ≤ Cϕδ/m

p ≤ R.

Hence using (2.3) we have

x̄j = ϕ(jh, ξ) ∈ B for j = 0, 1, · · · ,m− 1, (2.15)

and so |Υ(h, x̄j−1)| ≤ CΥ and we are done.

Step 1.2. We show that for any µ1 ∈ (0, 1)

∣∣DXGm(h, s, c, X̄m)−1
∣∣ ≤ Cϕm

1− µ1

(2.16)

holds if (h, s, c) ∈ Hm, and m is large enough (the main point is of course that the

lower threshold of m-s depends also on µ1, its limit is∞ as µ1 → 0+ – from now on

we omit remarks of this type).

Using (2.1) again we get DXGm(h, s, c, X̄m)[Y ] = AY +BY where

AY :=
(
− y1, ϕ′x(h, x̄

1)y1 − y2, ϕ′x(h, x̄
2)y2 − y3, · · ·

· · · , ϕ′x(h, x̄m−2)ym−2 − ym−1
)
,

BY :=
(
0, hp+1Υ′x(h, x̄

1)y1, hp+1Υ′x(h, x̄
2)y2, · · · , hp+1Υ′x(h, x̄

m−2)ym−2
)
.

Now AY = Z is solvable. Straightforward computation shows

y1 = −z1

yj = −zj −
j−1∑
r=1

ϕ′x(rh, x̄
j−r)zj−r, j = 2, · · · ,m− 1.

 (2.17)

Therefore |A−1Z| ≤ Cϕm (because (2.17) implies |yj| ≤ (1 + (m − 2)Cϕ)|Z| for j =
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1, · · · ,m− 1, noticing Cϕ ≥ 1 and (2.15) we arrive at the statement). Next we obtain

in a moment also |BY | ≤ CΥh
p+1 ((2.15) is used again). Now using

h <
1

m
+ dm <

1 + µ

m
(2.18)

we get

|A−1B| ≤ CϕmCΥh
p+1 <

CϕCΥ(1 + µ)p+1

mp

and so we have |A−1B| ≤ µ1 < 1 if m is large enough. Lemma 1.22 implies the

invertibility of A+B and also that

∣∣(A+B)−1
∣∣ ≤ |A−1|

1− |A−1B|
≤ Cϕm

1− µ1

and we have arrived at (2.16).

Step 1.3. We show that for any µ2 > 0 we have

|DXGm(h, s, c,X1)−DXGm(h, s, c,X2)| ≤ (1 + µ)Cϕ + µ2

m
|X1 −X2| (2.19)

for all X1, X2 ∈ B(X̄m, R/2), (h, s, c) ∈ Hm and m large enough.

At first notice that from

ϕ(h, x) = ϕ(0, x) +

∫ 1

0

∂

∂η
(ϕ(ηh, x))dη

= x+ h

∫ 1

0

ϕ′t(ηh, x)dη

we have

ϕ′′xx(h, x) = h

∫ 1

0

ϕ′′′txx(ηh, x)dη

which readily implies (cf. (2.8))

|ϕ′x(h, x1)− ϕ′x(h, x2)| ≤ hCϕ|x1 − x2| (2.20)

for all x1, x2 such that x1 + ϑ(x2 − x1) ∈ B, ϑ ∈ [0, 1].

For m large enough we have that

∀X1, X2 ∈ B(X̄m, R/2) : xj1 + ϑ(xj2 − x
j
1) ∈ B, j = 1, · · · ,m− 1. (2.21)
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This follows from the following considerations. The condition

δ/mp ≤ min{R/2Cϕ, δre(ε
?)/2}

is fulfilled for m large enough, this implies that |x̄j − γ(jh + s)| < R/2 (similar

considerations as we obtained (2.15)). Now

|xj1 + ϑ(xj2 − x
j
1)− γ(jh+ s)|

≤ (1− ϑ)|xj1 − x̄j|+ ϑ|xj2 − x̄j|+ |x̄j − γ(jh+ s)|

< (1− ϑ)
R

2
+ ϑ

R

2
+
R

2
= R

so from (2.3) we have xj1 + ϑ(xj2 − x
j
1) ∈ B which is exactly (2.21).

For such an X1, X2 using (2.1) we derive that

(DXGm(h, s, c,X1)−DXGm(h, s, c,X2)) [Y ] =(
0,
(
ϕ′x(h, x

1
1)− ϕ′x(h, x1

2)
)
y1,
(
ϕ′x(h, x

2
1)− ϕ′x(h, x2

2)
)
y2, · · ·

· · · ,
(
ϕ′x(h, x

m−2
1 )− ϕ′x(h, xm−2

2 )
)
ym−2

)
+
(

0, hp+1
(
Υ′x(h, x

1
1)−Υ′x(h, x

1
2)
)
y1, hp+1

(
Υ′x(h, x

2
1)−Υ′x(h, x

2
2)
)
y2, · · ·

· · · , hp+1
(
Υ′x(h, x

m−2
1 )−Υ′x(h, x

m−2
2 )

)
ym−2

)
.

Using (2.20) and (2.8) we obtain

|DXGm(h, s, c,X1)−DXGm(h, s, c,X2)| ≤ h(Cϕ + hpCΥ)|X1 −X2|.

Note again that (2.18) is valid, therefore for every m large enough we have

h(Cϕ + hpCΥ) <
(1 + µ)Cϕ + (1+µ)p+1CΥ

mp

m
≤ (1 + µ)Cϕ + µ2

m

and we have obtained exactly (2.19).

Step 1.4. Now the final step of the first part is coming. To fit into the framework
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of Lemma 2.1 with an equation Gm(h, s, c,X) = 0 set

U := Hm, V := RN(m−1), x = (h, s, c), ȳ(x) := X̄m(h, s, c),

α :=
CΥ

mp+1
, β :=

Cϕm

1− µ1

, l :=
(1 + µ)Cϕ + µ2

m
, % :=

CX

mp
.

 (2.22)

It has to be noted that for m large CX/m
p ≤ R is valid and so (2.4) holds on

B(ȳ(x), %). Conditions (2.5) and (2.6) has to be fulfilled. For (2.5) pick µ3 ∈ (0, 1),

then for m large enough we get

βl% =
(1 + µ)C2

ϕ + µ2CXCϕ

mp
≤ µ3 < 1.

Further using (2.18) we get

αβ

%(1− βl%)
<

CϕCΥ(1 + µ)p+1

CX(1−m1)(1− µ3)
,

so (2.6) in this setting will be valid if

CϕCΥ
(1 + µ)p+1

(1− µ1)(1− µ3)
< CX . (2.23)

According to the assumption CX < CX and that (1+µ)p+1

(1−µ1)(1−µ3)
→ 1+ as µ, µ1, µ3 → 0+,

there are always such suitably small parameters µ, µ1, µ3 ∈ (0, 1) that (2.23) is valid.

Therefore Lemma 2.1 can be used (the remaining assumptions are trivially satisfied)

and gives a unique element Xm(h, s, c) ∈ B(X̄m,CX/mp) such that

Gm(h, s, c,Xm(h, s, c)) = 0.

Moreover Xm is C3–smooth, |Xm − X̄m| < CX/m
p and

|DXGm(h, s, c,Xm)−1| ≤ β

1− βl%
≤ Cϕm

(1− µ1)(1− µ3)
.

Step 2.1. Set

z(h, s, c,∆) : = Hm(h, s, c,Xm(h, s, c),∆)

=
〈
ψ(∆, xm−1

m )− γ(s), f(γ(s))
〉
.

 (2.24)
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We show that for any µ4 > 0 we have

|z(h, s, c, ∆̄m)| ≤
NC2

ϕCX + µ4

mp
(2.25)

for all (h, s, c) ∈ Hm and m large enough. At first note that

z(h, s, c, ∆̄m) =
〈
ϕ(∆̄m, x̄

m−1)− γ(s), f(γ(s))
〉

+
〈
ϕ(∆̄m, x

m−1
m )− ϕ(∆̄m, x̄

m−1) + ∆̄p+1
m Υ(∆̄m, x

m−1
m ), f(γ(s))

〉
where the first term vanishes because of Lemma 2.2. From (2.10) we infer ∆̄m ∈

(0, h0/2) for m large enough. Next

|ϕ(∆̄m, x
m−1
m )− ϕ(∆̄m, x̄

m−1)| ≤ Cϕ|xm−1
m − x̄m−1| < CϕCX/m

p,

|∆̄p+1
m Υ(∆̄m, x

m−1
m )| ≤ (1 + µ)p+1CΥ

mp+1
.

From |〈a, b〉| ≤ N |a||b| and ϕ′t(0, x) = f(x) we obtain

|z(h, s, c, ∆̄m)| ≤
NCϕ

(
CϕCX + (1+µ)p+1CΥ

m

)
mp

.

For m large enough NCϕ(1+µ)p+1CΥ

m
≤ µ4 is valid, therefore (2.25) holds.

Step 2.2. We show for any µ5 > 0 that

|D∆z(h, s, c, ∆̄m)−1| ≤ 1 + µ5

Cmin

(2.26)

where (h, s, c) ∈ Hm and m is large enough. Straightforward computation yields

D∆z(h, s, c,∆m) = |f(γ(s))|22 + wm(h, s, c)
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where

wm(h, s, c) :=
〈
f(ϕ(∆̄m, x

m−1
m ))− f(ϕ(∆̄0

m, x̄
m−1,0))

+ ∆̄p+1
m Υ′h(∆̄m, x

m−1
m ), f(γ(s))

〉
,

∆̄0
m :=∆̄m(h, s, 0) = 1− (m− 1)h,

x̄m−1,0 :=x̄m−1(h, s, 0) = γ(s+ (m− 1)h).

Elementary considerations shows that

|wm| ≤
NC2

ϕδ(CX + δ(Cτ +
√
NCϕ))

mp

therefore for m large enough we obtain

|D∆z(h, s, c, ∆̄m)| ≥ |f(γ(s))|22
1 + µ5

≥ Cmin

1 + µ5

.

This shows (2.26) and we are done.

Step 2.3. We have

|D∆z(h, s, c,∆1)−D∆z(h, s, c,∆2)| ≤ NCϕCψ|∆1 −∆2| (2.27)

is valid for all (h, s, c) ∈ Hm,∆1,∆2 ∈ [0, h0] and m large. We easily derive that

D∆z(h, s, c,∆1)−D∆z(h, s, c,∆2) =〈
ψ′h(∆1, x

m−1
m )− ψ′h(∆2, x

m−1
m ), f(γ(s))

〉
=〈∫ 1

0

ψ′′hh(∆2 + ϑ(∆1 −∆2), xm−1
m )dϑ, f(γ(s))

〉
(∆1 −∆2)

which immediately yields (2.27).

Step 2.4. Finally we solve z(h, s, c,∆) with Lemma 2.1 (see (2.24)). Set

U := Hm, V := (0, h0), x := (h, s, c), ȳ(x) := ∆̄m(h, s, c),

α :=
NC2

ϕCX + µ4

mp
, β :=

1 + µ5

Cmin

, l := NCϕCψ, % := C∆/m
p.

 (2.28)

59



Note (2.10) again, so B(∆̄m, %) ⊂ V holds for m large enough. Now

βl% =
(1 + µ5)NCϕCψC∆

mp
≤ µ6 < 1

is valid for any µ6 ∈ (0, 1) if m is sufficiently large which fulfills (2.5). Now

αβ

%(1− βl%)
≤

(NC2
ϕCX + µ4)(1 + µ5)

C∆(1− µ6)
,

therefore (2.6) holds if
(NC2

ϕCX + µ4)(1 + µ5)

C∆(1− µ6)
< 1. (2.29)

Because of C∆ < C∆ and the already proven part of our theorem – that is CX can

be chosen arbitrary close to CX for m large enough – we conclude that (2.29) can be

fulfilled (with sufficiently small µ, µ4, µ5, µ6 > 0). Now Lemma 2.1 gives a unique

element ∆m ∈ B(∆̄m,C∆/mp) with z(h, s, c,∆m) = 0. Moreover

|∆m − ∆̄m| < C∆/m
p, |D∆z(h, s, c,∆m)−1| ≤ β

1− βl%
≤ 1 + µ5

Cmin(1− µ4)

are valid and the proof is finished ((2.13) is a straightforward consequence of the

1–periodicity of Gm, X̄m, Hm, z, ∆̄m in the variable s, and the uniqueness parts of the

steps 1.4. and 2.4.).

Remark 2.1. In the framework of Theorem 2.3 a natural approximation of P is

Pm(h, s, c) := ψ
(
∆m(h, s, c), xm−1

m (h, s, c)
)
.

Now

|P(s, c)− Pm(h, s, c)| ≤
∣∣ϕ(τ, ξ)− ϕ(∆m, x

m−1
m )

∣∣+
∣∣∆p+1

m Υ(∆m, x
m−1
m )

∣∣ .
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Notice that

∣∣ϕ(τ, ξ)− ϕ(∆m, X
m−1
m )

∣∣ =
∣∣ϕ(∆̄m, x̄

m−1)− ϕ(∆m, x
m−1
m )

∣∣
≤
∣∣ϕ(∆̄m, x̄

m−1)− ϕ(∆m, x̄
m−1)

∣∣+
∣∣ϕ(∆m, x̄

m−1)− ϕ(∆m, x
m−1
m )

∣∣
≤
∫ 1

0

|ϕ′t(∆m + ϑ(∆̄m −∆m), x̄m−1)|dϑ|∆̄m −∆m|

+

∫ 1

0

|ϕ′x(∆m, x
m−1
m + ϑ(x̄m−1 − xm−1

m )|dϑ|x̄m−1 − xm−1
m |

therefore |ϕ(τ, ξ) − ϕ(∆m, X
m−1
m )| ≤ Cϕ(CX + C∆)/mp (we used (2.8) and (2.21)). In

addition from (2.10) and (2.12) we have

|∆m| ≤ |∆̄m|+ |∆m − ∆̄m| ≤
1 + µ

m
+

C∆

mp

so ∣∣∆p+1
m Υ(∆m, x

m−1
m )

∣∣ ≤ (1 + µ+ C∆

mp−1

)p+1
CΥ

mp+1

Hence for any fixed µ7 > 0 we have |∆p+1
m Υ(∆m, x

m−1
m )| ≤ µ7

mp
for everym sufficiently

large.

Putting all this together we arrive at

|P(s, c)− Pm(h, s, c)| ≤ κ/mp (2.30)

where κ > κ := Cϕ(CX + C∆) is an arbitrary constant, m is sufficiently large and

µ, µ7 are small enough (c.f. (2.11)).

Remark 2.2. With a minor modifications in our settings p ≥ 1 would be possible until

now (basically to tackle the additional case p = 1 we would need: the extension ψ

to be a function defined on [−h0, h0] × RN ; enlarging constants in (2.8) by replac-

ing [0, h0] with [−h0, h0]; suitable changes in the definitions of dm,m0, Im,Bm). The

fundamental difference in the case p = 1 would be that the natural requirement

0 < ∆m < 2h is generally not satisfied, even for m large. So the last step size is

inappropriate. Possible correction would be to find the right number of iterations

of ψ(h, ·) to ensure that the next iteration with a step ∆̂ near h (at least satisfying
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0 < ∆̂ < 2h) we hit the Poincaré section. This procedure doesn’t fit to our approach

based on Lemma 2.1 therefore we are not going to specify the details.

2.3 Closeness of Differentials

Now we would like to get an upper bound in the spirit of (2.30) but for various

differentials |Dv[P(s, c)− Pm(h, s, c)]| for v ∈ {h, s, c}. At first we upgrade Lemma

2.1. Undoubtedly it is of its own interest in this abstract setting.

Lemma 2.4. Suppose all the assumption of Lemma 2.1. Moreover let us have α1, α2, l1 ≥ 0

such that

ȳ ∈ C1(U, V ) and |ȳ′(x)| ≤ α1,

|ϑ′(x)| ≤ α2, x ∈ U, for ϑ(x) := F (x, ȳ(x)),

|F ′x(x, y1)− F ′x(x, y2)| ≤ l1|y1 − y2| for x ∈ U, y1, y2 ∈ B(ȳ(x), %).

 (2.31)

Then we are able to extend the results of Lemma 2.1 by an estimate

|y′(x)− ȳ′(x)| ≤ %1, x ∈ U, (2.32)

where

%1 :=
β

1− βl%
(l%α1 + l1%+ α2) . (2.33)

Proof. From the equations F (x, y(x)) = 0 and F (x, ȳ(x)) = ϑ(x) after differentiation

we infer for x ∈ U that

y′(x) = −(F ′y(x, y(x)))−1F ′x(x, y(x)),

ȳ′(x) = (F ′y(x, ȳ(x)))−1(ϑ′(x)− F ′x(x, ȳ(x))).

From now we omit (x, y(x)) and (x, ȳ(x)), the superscript ¯ above F will indicate the

substitution of (x, ȳ(x)), otherwise we substitute (x, y(x)). We have

y′ − ȳ′ = (F ′y)
−1
(
−F ′x − F ′yȳ′

)
= (F ′y)

−1
(
(F̄ ′y − F ′y)ȳ′ − F̄ ′yȳ′ − F ′x

)
= (F ′y)

−1
(
(F̄ ′y − F ′y)ȳ′ + F̄ ′x − F ′x − ϑ′

)
,
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from which we get exactly (2.32) (using (2.31) and the assumptions and results of

Lemma 2.1) and the proof is finished.

Now we are going applying this lemma we continue Theorem 2.3, adopting its

notations get the following statement.

Theorem 2.5. There are constants CV,v for V ∈ {X,∆} and v ∈ {h, s, c} such that

∣∣Dv[Vm − V̄m]
∣∣ ≤CV,v/m

p, V ∈ {X,∆}, v ∈ {s, c},∣∣Dh[Vm − V̄m]
∣∣ ≤CV,h/m

p−1, V ∈ {X,∆},

 (2.34)

where δ > 0 is an arbitrary constant,m is large enough, µ is sufficiently small and (h, s, c) ∈

Hm(p, δ, µ).

Proof. To be able to apply Lemma 2.4 twice with frameworks described in (2.22) and

(2.28) we have to find additionally constants (for the sake of (2.31))

α1 = α1[V, v], α2 = α2[V, v], l1 = l1[V, v]

for all V ∈ {X,∆}, v ∈ {h, s, c}. This will be a bit sweating task.

Part 1.1 – about α1[X, v] for v ∈ {h, s, c}. After differentiation we get

Dh(x̄
j) = f(x̄j)j, Ds(x̄

j) = ϕ′x(jh, ξ)(f(γ(s)) + E ′(s)c),

Dc(x̄
j) = ϕ′x(jh, ξ)E(s)

for j = 1, 2, · · · ,m− 1. Therefore (using (2.8) and that |E(s)| ≤
√
N )

|Dh(X̄m)| ≤ Cϕm, |Ds(X̄m)| ≤ C2
ϕ + µ9, |Dc(X̄m)| ≤ Cϕ

√
N

where µ9 > 0 is an arbitrary parameter and m is large enough (CϕCEδ/m
p ≤ µ9 is

valid for m large enough). So

α1[X, h] := Cϕm, α1[X, s] := C2
ϕ + µ9, α1[X, c] := Cϕ

√
N. (2.35)

63



Part 1.2 – about α2[X, v] for v ∈ {h, s, c}. Note that

Ḡj
m :=Gm(h, s, c, X̄m(h, s, c))j = ψ(h, x̄j−1)− ϕ(h, x̄j−1)

=hp+1Υ(h, x̄j−1), j = 1, 2, · · · ,m− 1.

This implies

Dh(Ḡ
j
m) =hp[(p+ 1)Υ(h, x̄j−1)

+ h(Υ′h(h, x̄
j−1) + Υ′x(h, x̄

j−1)Dh(x̄
j−1))],

Ds(Ḡ
j
m) =hp+1Υ′x(h, x̄

j−1)Ds(x̄
j−1),

Dc(Ḡ
j
m) =hp+1Υ′x(h, x̄

j−1)Dc(x̄
j−1).

Using Part 1.1. of this proof and h < 1+µ
m

for Ḡm := (Ḡ1
m, Ḡ

2
m, · · · , Ḡm−1

m ) we infer

|Dh(Ḡm)| ≤ CΥ(Cϕ + p+ 1) + µ10

mp
,

|Ds(Ḡm)| ≤
CΥC2

ϕ + µ10

mp+1
, |Dc(Ḡm)| ≤ CΥCϕ

√
N + µ10

mp+1
.

for any fixed µ10 > 0, every m large enough and µ sufficiently small. This yields

α2[X, h] :=
CΥ(Cϕ + p+ 1) + µ10

mp
, α2[X, s] :=

CΥC2
ϕ + µ10

mp+1
,

α2[X, c] :=
CΥCϕ

√
N + µ10

mp+1
.

 (2.36)

Part 1.3 – about l1[X, v] for v ∈ {h, s, c}. We have in a moment that l1[X, v] = 0 for

v ∈ {s, c}. Further note at first that

DhGm(h, s, c,Xi) = (ψh(h, ξ), ψh(h, x
1
i ), · · · , ψh(h, xm−1

i ))

for Xi ∈ B(X̄m,CX/mp), i ∈ {1, 2}. Now for x1, x2 such that x1 + ϑ(x2 − x1) ∈ B for
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all ϑ ∈ [0, 1] we have

|ψh(h, x1)− ψh(h, x2)| ≤
∫ 1

0

|ψ′′hx(h, x2 + ϑ(x1 − x2))|dϑ|x1 − x2|

≤Cψ|x1 − x2|

which implies that l1[X, h] := Cψ is a good choice. Therefore

l1[X, h] := Cψ, l1[X, s] := 0, l1[X, c] := 0. (2.37)

Part 1.4 – determining CX,v for v ∈ {h, s, c}. Now we are ready to apply Lemma

2.4 in a setting (2.22) extended with (2.35),(2.36) and (2.37). From (2.32) we obtain

exactly (2.34) in a case V = X, v ∈ {h, s, c}with

CX,h >CX,h := Cϕ[C2
ϕCX + CψCX + CΥ(Cϕ + p+ 1)],

CX,s >CX,s := C3
ϕ[CϕCX + CΥ)],

CX,c >CX,c :=
√
NC2

ϕ[CϕCX + CΥ)]

for every m large enough. Indeed, for example in the case v = h (others are treated

similarly) we get from (2.33) for µ11 > 0 that

∣∣Dh(Xm − X̄m)
∣∣ ≤ β

1− βl%

[
l%α1[X, h] + l1[X, h]%+ α2[X, h]

]
=

Cϕm

(1− µ1)(1− µ3)

[
(1 + µ)Cϕ + µ2

m

CX

mp
Cϕm+ Cψ

CX

mp

+
CΥ(Cϕ + p+ 1) + µ10

mp

]
≤ CX,h + µ11

mp−1

for m large and µ small enough (we have also used (2.11) from Theorem 2.3).

Part 2.1 – about α1[∆, v] for v ∈ {h, s, c}. We easily get

Dh(∆̄m) = −m+ 1, Ds(∆̄m) = τ ′s, Dc(∆̄m) = τ ′c.

Therefore

α1[∆, h] := m, α1[∆, s] := Cτ , α1[X, c] := Cτ . (2.38)
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Part 2.2 – about α2[∆, v] for v ∈ {h, s, c}. Lemma 2.2 implies (see also the definition

(2.24))

z(h, s, c, ∆̄m) =
〈
ϕ(∆̄m, x̄

m−1)− γ(s), f(γ(s))
〉

+ 〈wm(h, s, c), f(γ(s))〉

= 〈wm(h, s, c), f(γ(s))〉

where

wm := ϕ(∆̄m, x
m−1
m )− ϕ(∆̄m, x̄

m−1) + ∆̄p+1
m Υ(∆̄m, x

m−1
m ).

Now

Dvz(h, s, c,∆m) =〈Dvwm, f(γ(s))〉, s ∈ {h, c},

Dsz(h, s, c,∆m) =〈Dswm, f(γ(s))〉+ 〈wm, f ′x(γ(s))f(γ(s))〉.

So at first we handle terms Dvwm for v ∈ {h, s, c}. Straightforward computation

shows that
Dvwm = (A1 + A2)Dv∆̄m + (A3 + A4)Dvx̄

m−1

+(A5 + A4)Dv(x
m−1
m − x̄m−1), v ∈ {h, s, c}

 (2.39)

where

A1 :=ϕ′t(∆̄m, x
m−1
m )− ϕ′t(∆̄m, x̄

m−1),

A2 :=(p+ 1)∆̄p
mΥ(∆̄m, x

m−1
m ) + ∆̄p+1

m Υ′h(∆̄m, x
m−1
m ),

A3 :=ϕ′x(∆̄m, x
m−1
m )− ϕ′x(∆̄m, x̄

m−1),

A4 :=∆̄p+1
m Υ′x(∆̄m, x

m−1
m ),

A5 :=ϕ′x(∆̄m, x
m−1
m ).

Let us have µ12 > 0, then computations as in the previous parts show that for m

large and µ small enough we have

|A1 + A2| ≤
CϕCX + CΥ(p+ 1) + µ12

mp
,

|A3 + A4| ≤
CϕCX + µ12

mp
, |A5 + A4| ≤ Cϕ + µ12
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For the remaining parts of the right side of (2.39) we have upper bounds in (2.35),

(2.38) and in the already proved case of (2.34) (c.f. Part 1.4). Putting this together we

get for any µ13 > 0 that

|Dhwm| ≤
C1 + µ13

mp−1
, |Dswm| ≤

C2 + µ13

mp
, |Dcwm| ≤

C3 + µ13

mp
,

where m sufficiently large, µ is small enough and

C1 :=CϕCX + CΥ(p+ 1) + C2
ϕCX + CX,hCϕ,

C2 :=
(
CϕCX + CΥ(p+ 1)

)
Cτ + C3

ϕCX + CX,sCϕ,

C3 :=
(
CϕCX + CΥ(p+ 1)

)
Cτ +

√
NC2

ϕCX + CX,cCϕ.

Furthermore for C4 := CϕCX similar computations show also |wm| ≤ (C4 +µ13)/mp..

Therefore we can finish this step with the following choices

α2[∆, h] :=
NCϕC1 + µ14

mp−1
, α2[∆, s] :=

NCϕ(C2 + C4) + µ14

mp
,

α2[∆, c] :=
NCϕC3 + µ14

mp
,

 (2.40)

where µ14 > 0 is an arbitrary parameter, m is large and µ is small enough.

Part 2.3 – about l1[∆, v] for v ∈ {h, s, c}. For ∆ ∈ B(∆̄m,C∆/mp) differentiating

yields

Dvz(h, s, c,∆) =〈ψ′x(∆, xm−1
m )Dvx

m−1
m , f(γ(s))〉, v ∈ {h, c},

Dsz(h, s, c,∆) =〈ψ′x(∆, xm−1
m )Dsx

m−1
m , f(γ(s))〉

+ 〈ψ(∆, xm−1
m )− γ(s), ϕ′′tx(s, ξ0)〉.

Note that from a triangle inequality we have

|Dhx
m−1
m | ≤ |Dhx̄

m−1|+ |Dh(x
m−1
m − x̄m−1)| ≤ Cϕm+ CX,h/m

p,

|Dsx
m−1
m | ≤ C2

ϕ + µ9 + CX,s/m
p, |Dcx

m−1
m | ≤

√
NCϕ + CX,c/m

p.

Employing Newton-Leibnitz formula straightforward computations for any µ15 > 0
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and m large enough imply that following choices are suitable

l1[∆, h] := NCψC2
ϕm+ µ15, l1[∆, s] := NCψCϕ(1 + C2

ϕ) + µ15,

l1[∆, c] := N3/2CψC2
ϕ + µ15.

 (2.41)

Part 2.4 – determining C∆,v for v ∈ {h, s, c}. As in the Part 1.4 we apply Lemma 2.4

in a setting (2.28) extended with (2.38),(2.40) and (2.41). From (2.32) we obtain (2.34)

in a case V = ∆, v ∈ {h, s, c}with

C∆,h >C∆,h :=
NCϕ[CψC∆(1 + Cϕ) + C1]

Cmin

,

C∆,s >C∆,s :=
NCϕ[CψC∆(Cτ + C2

ϕ) + C2 + C4]

Cmin

,

C∆,c >C∆,c :=
NCϕ[CψC∆(Cτ +

√
NCϕ) + C3]

Cmin

for every m large, µ small. The proof is complete.

Remark 2.3. Now as in the proof of Theorem 2.5 (see (2.39)) we get

DvP(s, c)−DvP(h, s, c) = (Ā1 − Ā2)Dv∆̄m + (Ā3 − Ā4)Dvx̄
m−1

−(Ā5 + Ā2)Dv(∆m − ∆̄m)− (Ā6 + Ā4)Dv(X
m−1
m − x̄m−1)

(2.42)

for v ∈ {h, s, c}, where

Ā1 :=ϕ′t(∆̄m, x̄
m−1)− ϕ′t(∆m, x

m−1
m ),

Ā2 :=(p+ 1)∆p
mΥ(∆m, x

m−1
m ) + ∆p+1

m Υ′h(∆m, x
m−1
m ),

Ā3 :=ϕ′x(∆̄m, x̄
m−1)− ϕ′x(∆m, x

m−1
m ),

Ā4 :=∆p+1
m Υ′x(∆m, x

m−1
m ),

Ā5 :=ϕ′t(∆m, x
m−1
m ), Ā6 := ϕ′x(∆m, x

m−1
m ).

From (2.10) we infer

|∆m| ≤ |∆̄m|+ |∆m − ∆̄m| ≤
1 + µ

m
+

C∆

mp
=

1 + µ+ C∆

mp−1

m
.

68



After lengthy computation for µ16 > 0 we get

|Ā1 − Ā2| ≤
C5 + µ16

mp
, |Ā3 − Ā4| ≤

CϕC∆ + µ16

mp
,

|Ā5 + Ā2| ≤ Cϕ + µ16, |Ā6 + Ā4| ≤ Cϕ + µ16,

where C5 := Cϕ(C∆ + CX) + (p + 1)Cp
5CΥ, m is large µ is small enough. Using in

addition (2.34), (2.35) and (2.38) for remaining terms in (2.42) we finally obtain

|Dh[P(s, c)− Pm(h, s, c)]| ≤κh/mp−1,

|Dv[P(s, c)− Pm(h, s, c)]| ≤κv/mp, v ∈ {s, c},

 (2.43)

where

κh >C5 + CϕC∆Cϕ + Cϕ(C∆,h + CX,h),

κs >C5Cτ + CϕC∆C2
ϕ + Cϕ(C∆,s + CX,s),

κc >C5Cτ + CϕC∆Cϕ

√
N + Cϕ(C∆,c + CX,c).

One may wish to continue in this direction developing bounds for

D2
v1v2

[Pm(h, s, c)− P(s, c)], v1, v2 ∈ {h, s, c}.

This is quite technical (computations rather for computer), therefore we show only

the key equipment namely the natural extension of Lemma 2.1 to the next level in

the spirit of Lemma 2.4.

Lemma 2.6. Suppose all the assumptions of Lemma 2.1 with X = X1 ×X2 ×X3 (Xi, i ∈

{1, 2, 3} are Banach spaces, and | · |X := maxi∈{1,2,3} | · |Xi). Let us have F ∈ Cr(U × V, Z)

for r ≥ 2 and also ȳ ∈ C2(U, V ). Suppose (like in (2.31)) that

|Dxi ȳ| ≤ α1,i, |Dxiϑ| ≤ α2,i,

|F ′xi(x, y1)− F ′xi(x, y2)| ≤ l1,i|y1 − y2|, x ∈ U, y1, y2 ∈ B(ȳ(x), %)

 (2.44)

for i ∈ {1, 2, 3}. Introduce also %1,i := β
1−βl% (l%α1,i + l1,i%+ α2,i) accordingly to (2.32).
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Further let us have

|D2
xixj

ȳ| ≤ α3,i,j, |D2
xixj

ϑ| ≤ α4,i,j,

|F ′′xiy(x, ȳ(x))| ≤ α5,i, |F ′′yy(x, ȳ(x))| ≤ α6,

|F ′′xixj(x, y1)− F ′′xixj(x, y2)| ≤ l2,i,j|y1 − y2|,

|F ′′xiy(x, y1)− F ′′xiy(x, y2)| ≤ l3,i|y1 − y2|,

|F ′′yy(x, y1)− F ′′yy(x, y2)| ≤ l4|y1 − y2|


(2.45)

for i, j ∈ {1, 2, 3}, i ≤ j and for all x ∈ U and y1, y2 ∈ B(ȳ(x), %). Then

|Dxixjy(x)−Dxixj ȳ(x)| ≤ %2,i,j, x ∈ U, i, j ∈ {1, 2, 3}, i ≤ j, (2.46)

where

%2,i,j :=
β

1− βl%

(
l%α3,i,j + α4,i,j + %l2,i,j + %1,jα5,i + %l3,i(α1,j + %1,j)

+ %1,iα5,j + %l3,j(α1,i + %1,i) + %1,iα6α1,j + %1,jα6(α1,i + %1,i)

+ %l4(α1,i + %1,i)(α1,j + %1,j)
)
.

Proof. Partial derivations with respect to xi into the direction δv ∈ Xi of the equa-

tions

F (x, y(x)) = 0 and F (x, ȳ(x)) = ϑ(x)

gives (we use notation F̄ from the proof of Lemma 2.4)

F ′xiδv + F ′yy
′
xi
δv = 0, F̄ ′xiδv + F̄ ′yȳ

′
xi
δv = ϑ′xiδv.

Now differentiating once more with respect to xj into the direction δw ∈ Xj we get

F ′′xixj [δv, δw] + F ′′xiy[δv, y
′
xj
δw] + F ′′yxj [y

′
xi
δv, δw] + F ′′yy[y

′
xi
δv, y′xjδw]

+F ′yy
′′
xixj

[δv, δw] = 0,

F̄ ′′xixj [δv, δw] + F̄ ′′xiy[δv, ȳ
′
xj
δw] + F̄ ′′yxj [ȳ

′
xi
δv, δw] + F̄ ′′yy[ȳ

′
xi
δv, ȳ′xjδw]

+F̄ ′yȳ
′′
xixj

[δv, δw] = ϑ′′xixj [δv, δw].
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Therefore as in the proof of Lemma 2.4 we infer

(y′′xixj − ȳ
′′
xixj

)[δv, δw]

= (F ′y)
−1
{

(F̄ ′y − F ′y)ȳ′′xixj + F ′yy
′′
xixj
− F̄ ′yȳ′′xixj

}
[δv, δw]

= (F ′y)
−1
{[

(F̄ ′y − F ′y)ȳ′′xixj − ϑ
′′
xixj

+ (F̄ ′′xixj − F
′′
xixj

)
]
[δv, δw]

+F̄ ′′xiy[δv, (ȳ
′
xj
− y′xj)δw] + (F̄ ′′xiy − F

′′
xiy

)[δv, y′xjδw]

+F̄ ′′yxj [(ȳ
′
xi
− y′xi)δv, δw] + (F̄ ′′yxj − F

′′
yxj

)[y′xiδv, δw]

+F̄ ′′yy[(ȳ
′
xi
− y′xi)δv, ȳ

′
xj
δw] + F̄ ′′yy[y

′
xi
δv, (ȳ′xj − y′xj)δw]

+(F̄ ′′yy − F ′′yy)[ȳ′xiδv, ȳ
′
xj
δw]
}
.

Now using the symmetry of the second derivatives, switching to the norms and

employing the assumptions of the theorem the final statement (2.46) follows and

the proof is finished.

Now we show a sketch of one possible application of Lemma 2.6. Let the equa-

tion Gm(h, s, c,X) = 0 be in the role of F (x1, x2, x3, y) = 0 with a basic framework

given in (2.22). We deal only with the case i = j = 3, when we are looking for

a bound of |D2
ccXm − D2

ccX̄m|. The proof of Theorem 2.5 – namely (2.35),(2.36) and

(2.37) – using notations of (2.44) implies

α1 =
√
NCϕ, α+2 =

√
NCϕCΥ + µ10

mp+1
, l1 = 0

needed in (2.44). Remaining constants in (2.45), skipping the details of the lengthy

computation, are

α3 = NCϕ, α4 =
N(1 + µ)p+1CϕCΥ(1 + Cϕ)

mp+1
, α5 = 0,

α6 :=
(1 + µ)Cϕ + µ2

m
, l2 = l3 = 0, l4 =

(1 + µ)Cϕ + µ2

m
.

Now application of Lemma 2.6 yields that for CX,cc > CX,cc, m large and µ small

enough we have

|D2
ccXm −D2

ccX̄m| ≤ CX,cc/m
p (2.47)

where CX,cc := C2
ϕ[NCϕCX +NCΥ(1 + Cϕ) + 2

√
NCϕCX,c +NC2

ϕCX ].
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Similarly it is possible to handle the equation z(h, s, c,∆) = 0 in a setting (2.28).

From (2.38),(2.40) and (2.41) we get

α1 = Cτ , α2 =
NCϕC3 + µ14

mp
, l1 = N3/2C2

ϕCψ + µ15.

Omitting again the details we get for µ17 > 0, m large and µ small enough that

α3 = Cτ , α4 =
N(p+ 1)pCϕCΥ + µ17

mp−1
,

α5 = N3/2C2
ϕCψ + µ17, α6 = NCϕCψ,

l2 = N2C2
ϕCψ(Cϕ + 1) + µ17. l3 = α5, l4 = α6

So Lemma 2.6 gives

|D2
cc∆m −D2

cc∆̄m| ≤ C∆,cc/m
p−1 (2.48)

for m large enough where C∆,cc > C∆,cc := N(p+1)pCϕCΥ

Cmin
.

Now as in the Remark 2.1 it would be possible to derive

|D2
ccPm(h, s, c)−D2

ccP(s, c)| ≤ C/mp−1

for some constant C. Instead of this we show a weaker result, namely that

|D2
ccPm(h, s, c)|

is uniformly bounded for every m large enough (uniformity is related to m–s).

Differentiation yields

D2
ccPm(h, s, c)[δv, δw] = ψ′′hh(∆m, x

m−1
m )[Dc∆mδv,Dc∆mδw]

+ψ′′hx(∆m, x
m−1
m )[Dc∆mδv,Dcx

m−1
m δw] + ψ′h(∆m, x

m−1
m )D2

cc∆m[δv, δw]

+ψ′′xh(∆m, x
m−1
m )[Dcx

m−1
m δv,Dc∆mδw]

+ψ′′xx(∆m, x
m−1
m )[Dcx

m−1
m δv,Dcx

m−1
m δw] + ψ′x(∆m, x

m−1
m )D2

ccx
m−1
m [δv, δw].

Switching to the norms, using (2.8), (2.34), (2.47) and (2.48) after some computations

we obtain

|D2
ccPm(h, s, c)| ≤ C6 (2.49)
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for C6 > C6 := Cψ

[
(Cτ +

√
NCϕ)2 + Cτ +NCϕ

]
, large m and small µ.
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2.4 A Closed Curve for a Discrete Dynamics

The nondegeneracy condition of γ

1 is a simple eigenvalue of ϕ′x(1, ξ0) (2.50)

is in the central role in this section.

The word simple means that the algebraic multiplicity of the eigenvalue 1 is one,

in other words λ = 1 is a simple root of the characteristic polynomial

det
(
λI− ϕ′x(1, ξ0)

)
.

Noting

ϕ′x(1, γ(s)) = Qϕ′x(1, ξ0)Q−1, Q := ϕ′x(s, ξ0), s ∈ R

we have that (2.50) is equivalent to

1 is a simple eigenvalue of ϕ′x(1, γ(s)) (2.51)

for any s ∈ R.

Introduce As := E(s)Tϕ′x(1, γ(s))E(s)− IN−1 where IN−1 is an (N − 1)× (N − 1)

identity matrix. Condition (2.50) implies that As is invertible. Indeed, suppose on

the contrary that Asv = 0 for v ∈ RN−1, v 6= 0. Then for w := E(s)v 6= 0 we infer

ϕ′x(1, γ(s))w = αf(γ(s)) + w, for some α ∈ R.

Using also that ϕ′x(1, γ(s))f(γ(s)) = f(γ(s)) we get (I−ϕ′x(1, γ(s)))2w = 0. Therefore

the geometric multiplicity of the eigenvalue 1 is at least 2 (w and f(γ(s)) are linearly

independent vectors from the generalised eigenspace; the geometric multiplicity

of the eigenvalue µ ∈ σ(T ), T ∈ B(Rn) is the number dim(Ker(λI − T ))). This is

a contradiction with (2.51) (geometric multiplicity is always less than or equal to

algebraic multiplicity – for more details see [35, Chapter 6 and Appendix III]).
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Theorem 2.7. Suppose that (2.50) holds and we have

δ >
√
Nκa, where a := max

s∈[0,1]

∣∣A−1
s

∣∣ .
Then for every m large enough and µ sufficiently small there is a unique function

ζm : Im(p, δ, µ)× R→ Bm(p, δ)

such that

Pm(h, s, ζm(h, s)) = ξ(s, ζm(h, s)), (h, s) ∈ Im × R. (2.52)

In addition ζm is C3–smooth in its arguments and ζm(h, s + 1) = ζm(h, s) for all (h, s) ∈

Im × R.

Proof. Introduce g(h, s, c) := E(s)T (Pm(h, s, c)− γ(s)) − c for (h, s, c) ∈ Hm. Then it

is easy to see that (2.52) is equivalent to g(h, s, ζm(h, s)) = 0. To settle this we apply

again Lemma 2.1 in the framework

U = Im × R, V = RN−1, x = (h, s), ȳ(x) = 0 ∈ RN−1.

From (2.30) we get

|g(h, s, 0)| = |E(s)T ||Pm(h, s, 0)− P(s, 0)| ≤
√
Nκ

mp
.

Further using P ′c(s, 0) = f(γ(s))τ ′c(s, 0) + ϕ′x(1, γ(s))E(s) and (2.2) it is straightfor-

ward to verify that

g′c(h, s, 0) = As +W, W := E(s)T
[
(Pm)′c (h, s, 0)− P ′c(s, 0)

]
.

From (2.43) we have |W | ≤
√
Nκc
mp

. Picking up any µ18 ∈ [0, 1) for every m large

enough we obtain

|A−1
s W | ≤ a

√
Nκc
mp

≤ µ18 < 1.

So from Lemma 1.22 we infer that g′c(h, s, 0) is invertible with

|g′c(h, s, 0)−1| ≤ a

1− µ18

.
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Next (2.49) easily gives for c1, c2 ∈ Bm that

|g′c(h, s, c1)− g′c(h, s, c2)|

=
∣∣E(s)T

∣∣ ∫ 1

0

|(Pm)′′cc(h, s, c2 + ϑ(c1 − c2))| dϑ|c1 − c2|

≤
√
NC6|c1 − c2|.

In the context of the setting of Lemma (2.1) we have derived

α =

√
Nκ

mp
, β =

a

1− µ18

, l =
√
NC6

and we have also % = δ
mp
. Now for any µ19 ∈ (0, 1) we get

βl% =
a
√
NC6δ

(1− µ18)mp
≤ µ19 < 1

for m large enough. So (2.5) holds. Further

αβ

%(1− βl%)
=

√
Nκa

(1− µ18)(1− µ19)δ

yields that (2.6) is valid if and only if

√
Nκa

(1− µ18)(1− µ19)
< δ.

This is satisfied for m large and κ− κ, µ, µ18, µ19 small enough because of (2.30) and

δ >
√
Nκa. Application of Lemma 2.1 gives ζm with the desired properties and the

proof is finished.

Remark 2.4. Introducing

Nm := Nm(p, δ) :=
{
ξ(s, c) ∈ RN : s ∈ R, c ∈ Bm(p, δ)

}
according to Theorem 2.7 we can state for the appropriate values of parameters that

{
x ∈ Nm(p, δ) : Pm

(
h, ξ−1(x)

)
(x) = x

}
= {ξ(s, ζm(h, s)) : s ∈ R} .
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Thorough study of the set of m–periodic points for discretized dynamics was

done in [21]. Our approach implies some results also to this direction.

Theorem 2.8. Suppose all the assumptions of Theorem 2.7 and fix any η ∈ (0, 1). Then for

m large enough we have for every s ∈ R a unique element h?(s) ∈ Im such that

∆m(h?(s), s, ζm(h?(s), s)) = h?(s).

Further h?(s+ 1) = h?(s) and h? ∈ C3(R, I?m) where

I?m :=

(
1

m
− d?m,

1

m
+ d?m

)
, d?m :=

C∆ + Cτδ

mp(m− η)
< dm.

Therefore

{
x ∈ Nm(p, δ) : x = ψm(h, x)

}
=
{
ξ(s, ζm(h?(s), s)) : s ∈ R

}
.

Proof. It is an elementary fact that for

g(h, s) := ∆m(h, sζm(h, s))− h, h ∈ Im, s ∈ R

we have

g(h, s) = g(1/m, s) +

∫ h

1/m

g′h(ϑ, s)dϑ. (2.53)

Now (2.8) and (2.34) yields

|g(1/m, s)| =|∆m(1/m, s, ζm(1/m, s))− ∆̄m(1/m, s, 0)|

≤|∆m(1/m, s, ζm(1/m, s))− ∆̄m(1/m, s, ζm(1/m, s))|

− |∆̄m(1/m, s, ζm(1/m, s))− ∆̄m(1/m, s, 0)|

≤C∆ + Cτδ

mp
.

Further

g′h(ϑ, s) = (∆m)′h(ϑ, s, ζm(ϑ, s)) + (∆m)′c(ϑ, s, ζm(ϑ, s))(ζm)′h(ϑ, s)− 1
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From Theorem 2.7 (using notation for g from its proof) we infer

(ζm)′h(ϑ, s) = −g′h(ϑ, s, ζm(ϑ, s))
[
g′c(ϑ, s, ζm(ϑ, s))

]−1

hence (cf. Lemma 2.1 and bound (2.43))

|(ζm)′h(ϑ, s)| ≤
a
√
Nκh

(1− µ18)(1− µ19)mp−1
.

In addition using (2.34) elementary computations show

(∆m)′h(ϑ, s, ζm(ϑ, s)) = (∆̄m)′h(ϑ, s, ζm(ϑ, s)) + wm = −m+ 1 + vm,

vm := (∆m)′h(ϑ, s, ζm(ϑ, s))− (∆̄m)′h(ϑ, s, ζm(ϑ, s)), |vm| ≤
C∆,h

mp−1
,

|(∆m)′c(ϑ, s, ζm(ϑ, s))| ≤ Cτ +
C∆,c

mp
.

Combining these facts we get

g′h(ϑ, s) = −m+ wm, |wm| ≤ η (2.54)

for every m large enough.

The relation d?m < dm holds evidently for m sufficiently large. Now (2.53) after

easy computations implies that

g(h, s) < 0, for h ∈
[

1

m
+ d?m,

1

m
+ dm

)
,

g(h, s) > 0, for h ∈
(

1

m
− dm,

1

m
− d?m

]
.

 (2.55)

Because of g(·, s) : Im → R is a C1–function with properties (2.55) and (2.54) we get

a unique element h?(s) ∈ Im such that g(h?(s), s) = 0 moreover h?(s) ∈ I?m. Ap-

plication of the implicit function theorem on the equation g(h, s) = 0 in the neigh-

bourhood of the solution (h?(s′), s′) for any s′ ∈ R yields also the C3–smoothness of

h? : R→ I?m and the proof is completed (the periodicity of h? is straightforward).

Remark 2.5. Usual arguments yield that for any A0 ∈ B(RN−1) and r > 0 we have

78



that the following minimum is attained and

min
λ∈C\Br

z∈RN−1,|z|=1

|(λI− A0)z| := c(r) > 0,

where Br :=
⋃
µ∈σ(A0) B(µ, r) and σ(A0) ⊂ C is the spectrum of A0. Therefore for

any A ∈ B(RN−1) such that |A − A0| < c(r) we have σ(A) ⊂ Br (for more general

statement see [10, Corollary 2.6, pp. 470]). Indeed, for λ ∈ C \Br we have

λI− A = (λI− A0)(I + (λI− A0)−1(A0 − A))

and

∣∣(λIm − A0)−1(A0 − A)
∣∣ ≤ ∣∣(λIm − A0)−1

∣∣ |A0 − A| <
1

c(r)
· c(r) = 1.

From Lemma 1.22 we get λ ∈ C \ σ(A) which gives C \ Br ⊂ C \ σ(A) and we are

done. Now set

A0 := E(s)TP ′c(s, 0), A := E(s)T (Pm)′c(h, s, c)

for any (h, s, c) ∈ Hm. Then after careful computations using primary (2.43) we get

|A− A0| < c(r) for m large enough. This yields

σ(A) ⊂
⋃

µ∈σ(A0)

B(µ, r).

Hence with c = ζm(h, s), or h = h?(s) and c = ζm(h?(s), s), we obtain for the above

detected curves also the corresponding closeness statements about their (h, s) and s

dependent spectrum.
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Conclusion

Hereby we would like to summarize the main new results of the thesis. We also

give some short comments on the main tools of their proofs. Finally we discuss the

possible continuation of the topics treated in this thesis.

In Subsection 1.2.2 under suitable conditions we proved that

ẋ ∈ A(t)x+ f(t, x) + g(t, x,X1)

has a unique γ-q. b. solution Γγ for γ ∈ (α, β), A ∈ Eα,β(R) and corresponding

to suitable selectors h ∈ Hε. We introduced the set Sγτ,ε of points Γγ(τ, h) and the

generalizations of the stable/unstable set of Sγτ,ε. These were designated by symbols

M r,γ
τ,ε , r ∈ {s, u}. Then we gave – as we had anticipated – the graph characterizations

of these sets. The results were stated in Theorem 1.18 and 1.19. The key idea for

their proofs was a simple transformation described in Lemma 1.17. Only one natural

difficulty arose, namely the condition (1.19). In order to replace it by a more natural

one a thorough discussion was made in remarks 1.8, 1.9. Basically we introduced

there new selector spaces which allowed us to transform our setting to the already

handled “bounded” problems in Theorem 1.18 and 1.19.

After that we gave answers to two important questions (see Subsection 1.2.3).

Firstly we showed that Γγ is independent of γ under suitable conditions (Theorem

1.20). Then secondly, we examined differential inclusions possessing hyperbolic

exponential dichotomy with several projections. Here we established conditions

which ensure that the system M r,γi
τ,ε , r ∈ {s, u}, i = 1, · · ·n inherit the adequate hier-

archy of projector ranges P±i (X) (cf. Theorem 1.21). The proofs of these facts were

carried out by the application of Theorems 1.18, 1.19).

Chapter 1 was finished with valuable remarks on hyperbolic exponential di-
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chotomy on R. In Theorems 1.23, 1.24 we gave sufficient conditions for λ ∈ C to

lie in the resolvent of A ∈ B(X) on a finite dimensional X and also for X = `p,

p ∈ [1,∞]. These results followed from Lemma 1.22 with a properly suited frame-

work. Then we analyzed some non-autonomous periodic ODE’s. A combination

of the previous results with the well-known equivalent definitions of exponential

dichotomy led to some sufficient conditions for these ODE’s being exponentially

dichotomous (see the Subsection 1.3.3).

The main result of Chapter 2 is Theorem 2.3. It allowed us the exact analytical

definition of the numerical Poincaré map Pm close to the classical Poincaré map P .

The proof basically relied on Lemma 2.1. After that with improvements of Lemma

2.1 – which are undoubtedly of their own interest (Lemma 2.4 and 2.6) – we stated

and proved upper bounds for differentials of P − Pm.

Having at hand the properly characterized numerical Poincaré map Pm we de-

voted Section 2.4 to the naturally arising phenomenon. Namely is the curves being

invariant under Pm in some sense. We obtained in Theorem 2.7 the existence of an

h-dependent curve (h, s) → ζm(h, s), (1-periodic in s ∈ R) which is invariant under

Pm(h, s, ·) for every (h, s) from a given subset of [0, 1] × R. This was proved again

using Theorem 2.1 with a crucial bounds had been derived in Section 2.3. A curve

of m-periodic points of the discretized system was also established in Theorem 2.8.

Although this second curve had been already detected in [21], our approach has

still some novelty value because we obtained qualitatively the same results using

the approach through discretized Poincaré map.

Based on this summary we may conclude that the goals of the work have been

fulfilled, moreover some additional questions which arose during the investigations

were also successfully answered.

Besides this, the topic is far from being closed, quite the opposite is true. Our

concrete future plans are

1) Examine what consequences follow for the discretized system if at some crit-

ical parameter value the continuous system undergoes a bifurcation from the

periodic orbit γ. Here the starting point will be a parametric ODE where the

nondegeneracy condition (2.50) of γ is altered at the critical value. The Lyapu-

nov–Schmidt method shall hopefully lead us to some reasonable bifurcation
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equation. We would like to carry out these consideration as general as possible

and find some connections between the genuine and the derived bifurcation

equation.

2) Turn to some concrete co-dimension one bifurcations and exhibit as much as

possible for the dynamics of the discretized system.

We have been concerned about these topics since we was acquainted by the series of

work [43,44,48–50] where numerical bifurcations were profoundly presented under

the assumed occurrence of the bifurcation from the equilibrium in the continuous

DS.

Some other possible directions would be

3) Averaging methods for general discretization procedures near the equilibrium.

How does the solution of the averaged system links to the exact and numerical

solution? For more see [24] where the Euler scheme was investigated.

4) An analysis of the relation between manifolds introduced in Chapter 1 and the

so-called multivalued numerical schemes (see [42]).

5) A generalization of Chapter 1 to some unbounded operators, e.g. in the ab-

stract strongly continuous semigroup setting (c.f. the thorough material [9]).

82



Bibliography

[1] J. P. AUBIN & A. CELLINA: Differential Inclusions, Set-Valued Maps and Via-

bility Theory. Springer, Berlin, 1984.

[2] J. P. AUBIN & H. FRANKOWSKA: Set-Valued Analysis. Birkhäuser, Basel, 1990.

[3] B. AULBACH & T. WANNER: Integral Manifolds for Carathéodory Type Differential

Equations in Banach Spaces, In: B. AULBACH & F. COLONIUS, Six Lectures on

Dynamical systems, World Scientific, Singapure, 45-119.

[4] B. AULBACH & T. WANNER: Invariant Foliations for Carathéodory Type Differential

Equations in Banach Spaces, In: V. LAKSHMIKANTHAM & A. A. MARTYNYUK:

Advances in Stability Theory at the End of the 20th Century, Taylor & Francis,

London, 13 (2003), 1-14.

[5] F. BATELLI & C. LAZARRI: Exponential dichotomies, heteroclinic orbits, and Mel-

nikov functions, J. Diff. Equations 86 (1990), 342-366.

[6] W–J. BEYN: On invariant closed curves for one–step methods, Numer. Math. 51

(1987), 103-122.

[7] A. A. BOICHUK & A. A. POKUTNII: Bounded solutions of linear differential equa-

tions in a Banach space, Nonlinear Oscillations 9 (2006), 1-12.

[8] M. BRAUN & J. HERSHENOV: Periodic solutions of finite difference equations,

Quart. Appl. Math. 35 (1977), 139-147.

[9] C. CHICONE & Y. LATUSHKIN: Evolution Semigroups in Dynamical Systems

and Differential Equations. Math. Survey Monograph, Vol. 70, Amer. Math.

Soc., Providence, 1999.

83



[10] S. N. CHOW, J. K. HALE: Methods of Bifurcation Theory. Springer-Verlag, New

York, 1982.

[11] D. L. COHN: Measure Theory. Birkhäuser, Boston, 1980.
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