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Abstract

In this review we introduce the framework of general probabilistic theories. Our aim is
to present the standard definitions and results as they are used in the current research but
we aim to provide more in-depth explanations than the ones we can find in a usual research
article. We also prove several standard results in a self-contained way that are meant to
provide the reader with consistent introduction to the framework.
keywords: general probabilistic theories, channels, incompatibility



Abstrakt

V práci zavedieme pojem všeobecnej probabilistickej teórie. Naším cieľom je prezentovať
štandardné definície a výsledky tak, ako sú v súčasnosti používané, ale chceme poskytnúť
obsažnejšie vysvetlenia ako tie, ktoré sa zväčša uvádzajú vo vedeckých článkoch. Rovnako
dokážeme niekoľko výsledkov, ktoré majú čitateľovi poskytnúť konzistentný úvod do všeobec-
ných probabilistických teórii.
kľúčové slová: všeobecné probabilistické teórie, kanály, nekompatibilita
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Introduction
The aim of this review is to introduce the framework of general probabilistic theories in a well
motivated and self-contained way and to present the standard results and constructions. We expect
the reader to have some familiarity with basic notions from linear algebra, convex geometry and
quantum information theory. In case it would be needed, we recommend the reader to [1, 2] to find
more information on linear algebra and convex analysis, to [3] to find more information on tensor
products, to [4, 5] to find more information on topology and to [6–9] to find more information
on quantum information theory. Linear programming and cone programming is a useful tool;
although we will not use it in this review, we would like to point the reader to [10, 11] as these
tools were recently used to obtain several interesting results [12–15].

This review is organized as follows: in Sec. 1 we introduce the framework of general probabilis-
tic theories and the axioms on which we are going to build the framework of general probabilistic
theories. We also discuss some of the limitations of our axioms and we even point out some of
the assumptions that are usually swept under the rug. In Sec. 2 we introduce all of the basic
definitions and results. We describe the convex geometry of the state space, the effect algebra and
the duality between them. We also introduce some examples of probabilistic theories. In Sec. 3
we introduce products of state spaces and effect algebras. We begin with the possible notions of
tensor products, but we also describe the direct products and direct convex sums. In Sec. 4 we
introduce transformations of state spaces. The main paradigm of our approach is to see everything
as a channel, even measurements and instruments corresponding to a measurement. In Sec. 5 we
define compatibility of channels and we prove some of the main results and in Sec. 6 we introduce
the phenomenons of steering and Bell non-locality. The last sections of the review are brief and
their aim is only to introduce the discussed topics and phenomenons.
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1 Introduction to probabilistic theories
Let’s build a new theory. How do we do that? And if we succeed in building the new theory, how
do we compare the new theory to the ones we already know? As strange as it may seem, these
questions are not entirely hypothetical as at the moment questions such as quantum supremacy
or post quantum cryptography are gaining importance. In order to start comparing theories or to
say what properties of a given theory specify it among others we clearly need a unified framework,
where all theories would be comparable on an equal setting. One of such frameworks is known as
general probabilistic theories (or GPTs for short), which is a geometrical framework that heavily
relies on the ideas of convexity and probabilistic mixtures. The settings of GPTs is great if
one wishes to get a deeper understanding of some of the non-classical effects that we observe in
quantum theory and the framework is general enough to include both finite dimensional classical
and quantum theory.

The basic premise on which we are going to build the framework of GPTs and on which many
other frameworks are built is the idea that there are states and there are measurements. As
straightforward as it may seem, one has to remember that this basic premise is already some-
thing that we assume on the grounds that we have never seen anything else. A measurement
is a procedure (or an equivalence class of procedures) that give us some information about the
system. A state of a system is a mathematical object (or an equivalence class of objects) that fully
describes the outcomes of all possible measurements that we can perform on said system. Here
we are assuming that we can distinguish measurements from states, i.e. that we can tell what are
measurements and what are states. As strange as it may seem in more general settings one may
only have two sets of objects and if we decide that one of the sets are states then the other are
measurements.

Before we proceed we are going to set up our naming convention. Since we can safely assume
that states form a set, we are going to refer to this set as state space. In a similar manner we are
going to referring to the set of measurements as to the set that includes all possible measurements
that we can perform.

As first we are going to assume that we can prepare every state from the state space and that
every state that we can prepare is included in the state space. This is quite straightforward as it
is equivalent to saying that if something never happens then we do not have to deal with it and if
something can happen then we do have to deal with it. We are implicitly assuming similar thing
about measurements as if there is some procedure that yields information about the system we are
assuming there is at least theoretical way to perform the given procedure. The assumption that we
can perform every mathematically well defined measurement is called No-Restriction hypothesis
and we will revisit this assumption in Subsec. 2.5

The next assumption is that randomness exists. It is usually stated that we can always flip a
coin and generate some random data, but that implicitly assumes that a random coin exists; some-
thing that is not trivial for e.g. classical computers. We are going to argue that in many theories
we do not have to assume the existence of randomness as whenever we will have a measurement in
the theory which has non-deterministic outcomes then we can use said measurement to generate
randomness; this is for example the case for quantum theory. The main aspect of randomness
that we are going to use is that for any two states we can toss a random coin and based on the
random outcome we can prepare either the first state or the second state. We are going to refer
to this mixing using randomness as probabilistic mixtures and we are going to assume that we
can perform the same with measurements. Moreover we are going to assume that an outcome of
a measurement performed on a probabilistic mixture of two states is going to be a probabilistic
mixture (with the same probabilities) of the measurement outcomes of the given states and that
a probabilistic mixture of the measurements is going to give us a new measurement such that
the outcome is again going to be a probabilistic mixture of the the outcomes of the two original
measurements (with the same probabilities). We are going to formalize the idea of probabilistic
mixtures using convex combinations.

We are going to assume that the set of states is bounded. This is because we are going to be
interested in mapping the set of states to probabilities. If the set of states would not be bounded
then we could not map the direction of recession to probabilities without violating the operational
interpretation of convex combinations. Another possible approach is to not assume boundedness
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of the set of state but later introduce relation of equivalence given as follows: two states are
equivalent if the results of all measurements on the given two states are the same. Clearly we
would like to factor the set of state with respect to this relation of equivalence as if we can not
distinguish two states then we can as well assume that they represent the same state. One can
see that this would also lead to obtaining a bounded set of states.

The last operational assumption we are going to assume is completeness, that is we are going
to assume that if we can prepare a state that is arbitrary close to some other fixed state, then we
can also prepare the limit state. The one thing that we have to specify is what it means that we
can prepare a state arbitrary close to another one and we are going to interpret this as that the
outcome of any measurement would be arbitrary close. This is a usable definition up to the point
where one realizes that now we have to specify what it means that outcomes of two measurements
are close to each other; we are going to address this problem soon.

There still are several assumptions that we are taking for granted. We are assuming that we
know what information (as an outcome of a measurement) is and how to measure distances between
measurement outcomes. This might seem obvious as what would be the point of a measurement
if we couldn’t interpret the information it gives in a reasonable sense yet one may argue that the
way we do it does not have to be unique. Similarly, we are going to assume that probabilities are
described by real numbers, which corresponds to our standard intuition of probabilities as relative
frequencies, but arguments using relative frequencies seem rather strange when describing single
shot experiments such as the probability of one photon passing through a polarization filter or the
probability of a given candidate wining an election. It is an open question whether we can extend
the notion of probability beyond our standard understanding, what would the generalization give
us and whether it is actually necessary or not.

Apart from the all aforementioned assumption we are going to assume that both the state
space and set of measurements will have a description using finite dimensional vector spaces. We
are going to assume that the number of dimensions is finite as this will simplify quite a few of our
calculations and in some cases it will be necessary.
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2 Basic definitions
In this section we are going to define the state space, the effect algebra, the duality between them
and present examples of state spaces and effect algebras. We are going to start by defining state
space and then we will construct the effect algebra.

2.1 Definition of the state space
Definition 1. Let V denote a finite dimensional real vector space with the standard Euclidean
topology. We say that K ⊂ V is a state space if, according to the assumptions from Sec. 1, K is
convex, closed and bounded.

We will consistently use K to denote a state space, unless stated otherwise. The first result is
almost immediate.

Proposition 1. Every state space is compact.

Proof. It is known fact that every bounded subset of a real, finite dimensional vector space is
completely bounded, which implies it is compact [5, Theorem 27.3].

There are two types of states: states that are convex combinations of other states and states
that are pure, i.e. they can not be expressed as convex combinations of other states. This is
an important aspect as the pure states are more fundamental than the mixed states in the sense
that we can see the mixed states as randomizations of pure states. This motivates the following
definition.

Definition 2. We say that x ∈ K is a pure state if for λ ∈ [0, 1] ⊂ R and y, z ∈ K we have that
x = λy + (1− λ)z implies y = z.

Pure states are also referred to as extreme points in the contexts of general theory of convex
sets. Still one may argue that not all mixed states are equal as some may be mixed more than
other. To characterize this property we introduce the notion of face.

Definition 3. Let F ⊂ K be a convex set such that if for λ ∈ (0, 1) and x, y ∈ K we have
λx+ (1− λ)y ∈ F then also x, y ∈ F .

One can see that a pure state is a face that contains only one point. There are plethora of
other results concerning the extreme points and faces of compact convex sets, see e.g. [1, Section
18]. We are going to present the following two.

Theorem 1 (Carathéodory). Let K ⊂ V be a state space and let B ⊂ K be a set such that
K = conv(B), where conv denotes the convex hull. Then any x ∈ K can be expressed as a convex
combination of at most dim(V ) + 1 points from B.

Proof. See [1, Theorem 17.1].

Theorem 2. Let K be a state space and let ext(K) be the set of pure states of K then K =
conv(ext(K)).

Proof. See [1, Theorem 18.5].

There is a special types of state spaces: polytopes. Polytopes are somehow simpler to deal
with than a general state space and often it is simpler to prove results for polytopes.

Definition 4. We say that a state space K is a polytope if it has finitely many pure states, i.e.
ext(K) contains finitely many points.

Another special type of state space is a strictly convex state space.

Definition 5. We say that a state space K is strictly convex if for any x, y ∈ K and λ ∈ (0, 1)
the state λx+ (1−λ)y belongs to the interior of K, i.e. the smallest face containing λx+ (1−λ)y
is K.
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2.2 Definition of the effect algebra
Having defined a state space, we would want to define measurements, but for the time being we
will abstain from doing it. For now, we will only define a more restricted notion of effect. Effects
are maps that assign probabilities to states and as we will see in Subsec. 4.4 effects are the building
blocks of measurements. For a given theory the set of effects will be called effect algebra, the name
will be explained in Subsec. 2.3. In the following we will rely on the notion of affinity. We say that
a map Φ is affine if for x, y ∈ K and λ ∈ [0, 1] we have Φ(λx+ (1− λ)y) = λΦ(x) + (1− λ)Φ(y).
Clearly affinity of the maps that we will work with follows from our probabilistic interpretation
of convex combinations. Since we have assumed to describe probabilities by real numbers we are
going to be interested in affine maps that assign real numbers to states.

Definition 6. A(K) will denote the set of all affine maps f : K → R. A(K) has a natural order
given for f, g ∈ A(K) as f ≤ g if and only if for all x ∈ K we have f(x) ≤ g(x) and a norm ‖ · ‖sup

given as
‖f‖sup = sup

x∈K
|f(x)|.

Proposition 2. A(K) is a partially ordered normed vector space.

Proof. The fact that linear combination of affine maps is again affine is obvious; it is also straight-
forward to see that ‖ · ‖sup is a norm. At first note that since K is compact, then supx∈K |f(x)| is
always finite. For f, g ∈ A(K) and x ∈ K we have that f(x) = 0 for all x ∈ K implies f = 0, for
α ∈ R we have (αf)(x) = αf(x) and supx∈K |(f + g)(x)| ≤ supx∈K |f(x)| + supx∈K |g(x)|. Also
note that we can replace the supremum with maximum as K is closed.

Let f, g, h ∈ A(K) and x ∈ K, then f ≤ f as f(x) ≤ f(x), i.e. ≤ is reflexive. Assume
that f ≤ g and g ≤ f , then we have f(x) ≤ g(x) and g(x) ≤ f(x) which implies f(x) = g(x)
for all x ∈ K and f = g so ≤ is antisymmetric. Assume that f ≤ g and g ≤ h, then we have
f(x) ≤ g(x) ≤ h(x) for all x ∈ K so f ≤ h which shows that ≤ is transitive.

We are also going to write f ≥ g whenever g ≤ f . A well known fact is that the partial order
over a vector space is equivalent to picking a cone inside the vector space. A cone P is a subset of
a vector space such that for every λ ∈ R+, we have v ∈ P if and only if λv ∈ P , where R+ denotes
the set of non-negative real numbers.

Definition 7. A(K)+ will denote the cone of positive elements of A(K), i.e.

A(K)+ = {f ∈ A(K) : f ≥ 0}.
A somewhat special role is played by the constant functions which will be denoted by the value

they attain, e.g. 1 ∈ A(K) is a function such that 1(x) = 1 for all x ∈ K.
We say that a cone P is pointed when v ∈ P and −v ∈ P implies v = 0 and we say that P is

generating when for P ⊂W where W is a vector space and every w ∈W we have v1, v2 ∈ P such
that w = v1 − v2.

Proposition 3. A(K)+ is a convex closed pointed and generating cone.

Proof. It is straightforward that A(K)+ is convex. Assume that {fn}∞n=1 is a sequence of positive
functions that converges to f , then for every x ∈ K we have that {fn(x)}∞n=1 converges to f(x)
so fn(x) ≥ 0 for all n ∈ N implies f(x) ≥ 0 and we get f ≥ 0. To show that A(K)+ is pointed
assume that f ≥ 0 and f ≤ 0 at the same time, then we have f(x) ≥ 0 and f(x) ≤ 0 for all x ∈ K
which implies f = 0.

The proof that A(K)+ is generating is actually somewhat interesting and useful to remember.
Let f ∈ A(K) and let m = minx∈K f(x) then we have f = (f − m) + m where f − m ≥ 0 as
minx∈K(f −m)(x) = 0. The interesting part is that we can always choose the negative part of
f to be a constant function. Of course this is just a consequence of 1 ∈ int(A(K)+) where int
denotes the interior.

We will proceed with defining a dual object to the state space: the effect algebra. Effect algebra
will be the set of all maps that assign probabilities to states and it will be important later on for
the concept of measurement. We will also revisit the notion of effect algebra in Subsec. 2.3 where
will compare our definition to a more abstract one as well as explain why it is called an algebra.
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Definition 8. Let K be a state space then the effect algebra over K is denoted as E(K) and it
is defined as

E(K) = {f ∈ A(K) : 0 ≤ f ≤ 1}.
We call f ∈ E(K) an effect. Moreover we will refer to the function 1 ∈ E(K) as unit effect.

Note that effect algebra is again a compact convex set, it has extreme points and the results
of the Thm. 1 and Thm. 2 apply to it as well. The following is a simple yet important result.

Proposition 4. Let f ∈ E(K), then also 1− f ∈ E(K).

Proof. 1− f ≥ 0 follows from f ≤ 1 and 1− f ≤ 1 follows from f ≥ 0.

2.3 Relation to abstract definition of convex effect algebra
Effect algebras were originally introduced in [16] as a generalization of the projections in quantum
theory and since then were heavily investigated [17–21], see [22] for a review. We are going to
present the abstract definition as well as the results that put into context why we introduced the
effect algebra the way we did.

Definition 9. An effect algebra is a system (E, 0, 1,+) where E is a set, 0, 1 ∈ E and + is a
partially defined binary operation. Let a, b ∈ E then we write a ⊥ b if a + b is defined. Let
a, b, c ∈ E, then it must hold that

(E1) if a ⊥ b then also b ⊥ a and a+ b = b+ a,

(E2) if a ⊥ b and (a+ b) ⊥ c then b ⊥ c, a ⊥ (b+ c) and (a+ b) + c = a+ (b+ c),

(E3) for every a ∈ E there is a′ ∈ E such that a ⊥ a′ and a+ a′ = 1,

(E4) if a ⊥ 1 then a = 0.

Special class of effect algebras are convex effect algebras.

Definition 10. Effect algebra E is convex if for every a ∈ E and λ ∈ [0, 1] ⊂ R there is an element
λa ∈ E such that for all λ, µ ∈ [0, 1] and a, b ∈ E we have

(C1) µ(λa) = λ(µa),

(C2) if λ+ µ ≤ 1, then λa ⊥ µa and λa+ µa = (λ+ µ)a,

(C3) if a ⊥ b, then λa ⊥ λb and λa+ λb = λ(a+ b),

(C4) 1a = a.

Special class of convex effect algebras are effect algebras which are intervals in real ordered
vector spaces. As we will see, these effect algebras are closely related to our Def. 8.

Proposition 5. Let V be a real vector space with a pointed cone P , that is P ∩ −P = {0} and
for v, w ∈ V define the partial order ≥ given as v ≥ w if v − w ≥ 0. Let u ∈ P then the interval

[0, u] = {v ∈ V : 0 ≤ v ≤ u}

is a convex effect algebra with the partially defined binary operation of sum of vectors and 1 = u.
The convex structure is given by multiplication of vectors by scalars.

Proof. The proof is straightforward. Let v, w, x ∈ [0, u], then v+w = w+ v, and v+w ≤ u if and
only if w+v ≤ u. If v+w ≤ u and (v+w)+x ≤ u then from (v+w)+x = v+w+x = v+(w+x)
we have w + x ≤ v +w + x ≤ u. We define v′ = u− v as the unique element such that v + v′ = u
and v′ ∈ [0, u] if and only if v ∈ [0, u]. At last if v + u ≤ u then v ≤ 0 but also v ≥ 0 so we must
have v = 0. This shows that [0, u] is an effect algebra.

Keep v, w ∈ [0, u] and let λ, µ ∈ [0, 1]. Clearly we have λ(µv) = λµv = µ(λv). If λ + µ ≤ 1,
then λv + µv = (λ+ µ)v ≤ v ≤ u. If v + w ≤ u, then also λv + λw = λ(v + w) ≤ v + w ≤ u. At
last, 1v = v is trivial. This shows that [0, u] is convex effect algebra.
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Definition 11. Let V be a real vector space with a pointed cone P and let u ∈ P , then we call
[0, u] linear effect algebra.

The following justifies why we used the term effect algebra in Def. 8.

Corollary 1. Let K be a state space and let E(K) be the effect algebra over K as given by Def.
8. Then E(K) is a linear effect algebra with u = 1, P = A(K)+ and V = A(K).

Proof. By definition we have E(K) = [0, 1] ⊂ A(K).

We would like to mention one more result on the relation between linear effect algebras and
convex effect algebras. As we have seen, every linear effect algebra is convex and one can actually
prove that also every convex effect algebra is isomorphic to some linear effect algebra. To formulate
the result we will first have to define the isomorphism.

Definition 12. Let E, F be effect algebras. A map Φ : E → F is called additive if for a, b ∈ E,
a ⊥ b we have Φ(a) ⊥ Φ(b) and Φ(a + b) = Φ(a) + Φ(b). An additive map Φ such that Φ(1) = 1
is called morphism. A surjective morphism Φ such that for a, b ∈ E, Φ(a) ⊥ Φ(b) implies a ⊥ b is
called isomorphism. If E, F are convex, then a morphism Φ such that for all a ∈ E and λ ∈ [0, 1]
we have Φ(λa) = λΦ(a) is called affine.

Theorem 3 (Gudder, Pulmannová). Every convex effect algebra is affinely isomorphic to a linear
effect algebra.

Proof. See [23] for a proof.

2.4 Duality between the state space and the effect algebra
There is an important duality in our construction that we will often use. To motivate what will
follow consider this question: could two state spaces have the same effect algebra or is there a
unique state space corresponding to a given effect algebra? What we will do to answer the question
is to explore the set of all functionals that will have probabilities assigned by the effects; to do
so we will have to look at some structure of the dual to A(K). Since we intend to work with
positivity of linear functionals the notion of dual cone will play an important role.

Definition 13. Let V be a real finite dimensional vector space and let P ⊂ V be a cone. Let V ∗
denote the dual vector space of linear functionals then the cone dual to P is P ∗ ⊂ V ∗ defined as

P ∗ = {ψ ∈ V ∗ : 〈ψ, v〉 ≥ 0,∀v ∈ P}, (1)

where for v ∈ V and ψ ∈ V ∗ we have denoted 〈ψ, v〉 the value that the functional ψ reaches on
the vector v.

To motivate our exploration of the structure of the dual vector space of A(K), note that for
a fixed state x ∈ K and some f ∈ A(K) the evaluation functional φx : f 7→ f(x) is a linear
functional on A(K), i.e. we can use any state to construct a linear functional on A(K). Denote
A(K)∗ the dual vector space to A(K), it is uniquely defined as A(K) is finite dimensional. For
ψ ∈ A(K)∗ and f ∈ A(K) we will denote 〈ψ, f〉 the value that ψ reaches on f . Dual cone to
A(K)+ is given as

A(K)∗+ = {ψ ∈ A(K)∗ : 〈ψ, f〉 ≥ 0,∀f ∈ A(K)+}.
Definition 14. Let S(E(K)) ⊂ A(K)∗ be given as

S(E(K)) = {ψ ∈ A(K)∗+ : 〈ψ, 1〉 = 1}.

We will call S(E(K)) the state space over E(K).

At this point one may be confused: K is the state space and S(E(K)) is a state space over
E(K), so it appears as a very poor naming convention. We will show that K is affinely isomorphic
to S(E(K)) hence they can be considered the same object. Moreover this will be an important
duality that we will use in the future. During the proof we will use the separation theorem which
we will state for completeness.
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Theorem 4 (Separation theorem). Let V be a finite dimensional real vector space and let A,B ⊂
V be disjoint compact convex sets, i.e. A ∩ B = ∅. Then there exists an affine function f on V
such that

max
x∈A

f(x) < 0 < min
y∈B

f(y).

Proof. See [11, Section 2.5] for a proof and note that as A,B are compact and disjoint, their
Euclidean distance given by the standard Euclidean metric must be positive.

The following is immediate and useful consequence.

Corollary 2. Let x, y ∈ K, x 6= y then there is f ∈ E(K) such that f(x) < f(y).

Proof. Let A = {x} and B = {y} then as a result of Thm. 4 there is f ′ ∈ A(K) such that
f ′(x) < f ′(y). If f ′ ∈ A(K)+ then we can construct f ∈ E(K) with said property as follows: let
M = maxz∈K f ′(z) then take f = f ′

M , we have f ∈ E(K).
If f ′ /∈ A(K)+ then let m = minz∈K f ′(z) and let f ′′ = f ′ −m; note that f ′ /∈ A(K)+ implies

m < 0. f ′′ ∈ A(K)+ and f ′′(x) < f ′′(y). Now we can construct f as above.

Note that in the same way we can use the separation theorem to prove that the effects are
separated by states.

Theorem 5. S(E(K)) is affinely isomorphic to K.

Proof. We will proof the statement in two steps, first we will show that K is affinely isomorphic
to a subset of S(E(K)) and then we will use the separation theorem to show that the subset is
actually the whole set.

Let x, y ∈ K, λ ∈ [0, 1] and f ∈ A(K) and consider again the evaluation functional 〈φx, f〉 =
f(x). It is easy to see that φx ∈ A(K)∗+ and 〈φx, 1〉 = 1 for all x ∈ K, hence φx ∈ S(E(K)).
This gives rise to a map φ : K → S(E(K)), moreover this map is affine as

〈φ(λx+(1−λ)y), f〉 = f(λx+ (1− λ)y) = λf(x) + (1− λ)f(y)

= λ〈φx, f〉+ (1− λ)〈φy, f〉

implies φ(λx+(1−λ)y) = λφx + (1 − λ)φy. Hence φ(K) ⊂ S(E(K)), where φ(K) = {φx ∈ A(K)∗ :
x ∈ K} and the map φ is affine. The fact that this is an isomorphism of K with a subset of
S(E(K)) follows from the fact that for x, y ∈ K if x 6= y then φx 6= φy follows from Coro. 2.

Now assume there is ψ ∈ S(E(K)) such that ψ /∈ φ(K) then by Thm. 4 there is f ∈ A(K)
such that

〈ψ, f〉 < 0 < min
x∈K

f(x).

Observe that 0 < minx∈K f(x) implies that f ∈ A(K)+ but then 〈ψ, f〉 < 0 is a contradiction
with ψ ∈ A(K)∗+.

From now on we are going to drop the isomorphism φ and we will simply considerK ⊂ A(K)∗+.
This will also allows us to define linear combinations of states but one must be careful as for
x, y ∈ K, α, β ∈ R and f ∈ A(K) we will have

〈αx+ βy, f〉 = α〈x, f〉+ β〈y, f〉

and for f = 1
〈αx+ βy, 1〉 = α+ β.

This may appear obvious now but it is very easy to make a blunder during calculations. Also for
this reason we will append the coordinate expressions of states in Subsec. 2.6 with 1.

We already know that we could have started our construction by defining the effect algebra
E(K) instead of the state space K and we would obtain the same theory as S(E(K)) = K.
Moreover Thm. 5 shows the same duality between the positive cones. We will proceed to explore
the structure of A(K)∗+.
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Definition 15. Let V be a vector space and let P ⊂ V be a cone. The base of the cone P is a
convex set B ⊂ P such that for every p ∈ P , p 6= 0 there is a unique x ∈ B and λ ∈ R+ such that

p = λx.

Corollary 3. K is the base of A(K)∗+.

Proof. Let ψ ∈ A(K)∗+, ψ 6= 0, then we will show that 〈ψ, 1〉 > 0. If 〈ψ, 1〉 = 0 then also for every
f ∈ E(K) we have 〈ψ, f〉 ≤ 〈ψ, 1〉 = 0 as f ≤ 1 so 〈ψ, f〉 = 0. Then also for every g ∈ A(K)+

we have 〈ψ, g〉 = 0 as every g ∈ A(K)+ is a multiple of some effect as we can just divide g by
the maximum it takes on K and obtain an effect. In conclusion 〈ψ, 1〉 = 0 implies ψ = 0 for
ψ ∈ A(K)∗+.

Take ϕ = ψ
〈ψ,1〉 , then ϕ ∈ A(K)∗+ and 〈ϕ, 1〉 = 1 so by Thm. 5 we have ϕ ∈ K. It is

straightforward to see that the construction is unique.

Corollary 4. The dual cone to A(K)∗+ is A(K)+, i.e. we have

A(K)+ = {f ∈ A(K) : 〈ψ, f〉 ≥ 0,∀ψ ∈ A(K)∗+}.

Proof. Note that 〈ψ, f〉 ≥ 0 for every ψ ∈ A(K)∗+ if and only if 〈x, f〉 ≥ 0 for every x ∈ K as K
is the base of A(K)∗+. The result follows.

For completeness we will show that any base of a convex, pointed and generating cone is a
valid state space.

Proposition 6. Let V be a finite dimensional real vector space, let P ⊂ V be a convex, closed,
pointed, generating cone and let K ⊂ P be a base of P , then K is a state space.

Proof. First of all we will show that we require P to be pointed in order to even have a base.
Assume that P is not pointed and that it has a base K, then there is 0 6= v ∈ P ∩ (−P ) such that
for some λ, µ ∈ R+ and x, y ∈ K we have

λx = v = −µy.

Then we have
λ

λ+ µ
x+

µ

λ+ µ
y = 0

so also 0 ∈ K. This is a contradiction with K being a base of P , because now if x ∈ K then also
for all λ ∈ [0, 1] we have λx ∈ K. It follows that if p ∈ P such that for some µ ∈ R+ and y ∈ K
we have p = µy then the coefficient µ is not uniquely given as we also have p = (2µ)( 1

2y) and we
have already argued that 1

2y ∈ K as well.
Let u : K → R be a constant function defined for x ∈ K as u(x) = 1. We will extend u to

a positive linear functional. Let 0 6= p ∈ P , then we have p = λx for some λ ∈ R+ and x ∈ K
and define u(p) = λ. This is well defined since λ is unique for the given p. Moreover let u(0) = 0
which is still consistent and continuous. Now we will show that u is affine on P : let p, q ∈ P such
that p = λx, q = µy for some x, y ∈ K and λ, µ ∈ R+ and let α ∈ [0, 1], we have

αp+ (1− α)q = αλx+ (1− α)µy

= (αλ+ (1− α)µ)

(
αλ

αλ+ (1− α)µ
x+

(1− α)µ

αλ+ (1− α)µ
y

)

It follows that
u(αp+ (1− α)q) = αλ+ (1− α)µ = αu(p) + (1− α)u(q).

It is also quite straightforward that for p ∈ P and λ ∈ R+ we have

u(λp) = λu(p)

so then if p, q ∈ P and λ, µ ∈ R+ we get

u(λp+ µq) = λu(p) + µu(q)
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by expressing λp+ µq as a multiple of a convex combination and using the above properties of u.
Now let v ∈ V , then there are p, q ∈ P such that v = p− q and we define

u(v) = u(p)− u(q).

To see that the definition is consistent, let v = p − q = p′ − q′ for some p, q, p′, q′ ∈ P , then we
have p+ q′ = p′ + q and

u(p) + u(q′) = u(p′) + u(q).

It follows that
u(p)− u(q) = u(p′)− u(q′).

Note that u ∈ V ∗ is by construction the unique linear functional such that

K = {p ∈ P : u(p) = 1}.

Now we can show that K is closed. Let {xi}∞i=1 ⊂ K be a Cauchy sequence. Since P is closed
there must be p ∈ P that is the limit of the sequence, i.e. p = limi→∞ xi. Since u is a linear
functional, it must be continuous and we must have

〈u, p〉 = lim
i→∞
〈u, xi〉 = 1.

It follows that p ∈ K so K is closed.
The proof that K is bounded is rather technical. If K is not bounded then there must be a

functional ψ ∈ V ∗ such that for any n ∈ N there is xn ∈ K such that 〈ψ, xn〉 > n. Now let P ∗
denote the dual cone to P , we are going to show that u /∈ int(P ∗), i.e. that u is not an interior
point of P ∗. Assume that u ∈ int(P ∗), then P ∗ contains an open ball B(u) ⊂ P ∗ centered at u.
It follows that for any ϕ ∈ V ∗ we can always find a point ξ ∈ B(u) such that u lies on the line
segment connecting ξ and ϕ, i.e. that for some λ ∈ (0, 1) we have

u = λξ + (1− λ)ϕ.

Now let ϕ = ψ, we have
λξ = u− (1− λ)ψ.

and for any x ∈ K we must have

0 ≤ λ〈x, ξ〉 = 1− (1− λ)〈x, ψ〉.

Let x = xn, where xn ∈ K is the point such that 〈ψ, xn〉 ≥ n introduced above, then

0 ≤ 1− (1− λ)〈xn, ψ〉 ≤ 1− (1− λ)n

for all n ∈ N which is a contradiction as we can always find some n ∈ N such that (1 − λ)n ≥ 1.
So if K is not bounded, then u /∈ int(P ∗). One can show that since P ∗ is a dual cone to P it is
convex and closed, for every point ϕ ∈ P ∗ such that ϕ /∈ int(P ∗) there is some p ∈ (P ∗)∗ such
that

〈ϕ, p〉 = 0,

see [1, Theorem 11.5]. Now since we have already argued that if K is not bounded then u /∈ int(P )
so let p ∈ (P ∗)∗ be such that 〈u, p〉 = 0. Moreover since P is convex and closed, one can show
that (P ∗)∗ = P . It follows that p ∈ P so there must be y ∈ K and λ ∈ R+ such that p = λy and
we get 〈u, y〉 = 0 which is a contradiction. Hence K must be bounded.

We will proceed with examining the structure of the cone A(K)∗+. Note that the properties
of A(K)∗+ will follow from the fact that it is a dual cone to A(K)+.

Proposition 7. A(K)∗+ is convex, closed, pointed and generating cone.
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Proof. It follows from the definition of A(K)∗+ as a cone of positive functionals that it is a convex
cone.

To see that A(K)∗+ is closed we will use the fact that in the finite dimensional vector space
all linear functionals are continuous. Hence if {ψn}∞n=1 ⊂ A(K)∗+ is a convergent sequence, such
that ψ = limn→∞ ψn then for every f ∈ A(K)+ we have

〈ψ, f〉 = lim
n→∞

〈ψn, f〉.

〈ψ, f〉 ≥ 0 follows from 〈ψn, f〉 ≥ 0.
To see that A(K)∗+ is pointed assume there is ψ ∈ A(K)∗+ ∩ −A(K)∗+ then for every f ∈

A(K)+ we must have that 〈ψ, f〉 = 0 which implies ψ = 0 as A(K)+ is generating.
To see that A(K)∗+ is generating remember that A(K)+ is pointed, i.e. we have A(K)+ ∩

−A(K)+ = {0}. Now assume that A(K)∗+ is not generating, i.e. that there is ψ ∈ A(K)∗ such
that ψ /∈ A(K)∗+ − A(K)∗+. Then there is a function f ∈ A(K) such that 〈ψ, f〉 6= 0 but for
all ϕ ∈ A(K)∗+ − A(K)∗+ we have 〈ϕ, f〉 = 0. Note that we can construct such f ∈ A(K) as
(A(K)∗)∗ = A(K) and we can choose a suitable base in A(K)∗ that contains φ, find a dual base
in A(K) and use a suitable element of the dual base. It follows that 0 6= f ∈ A(K)+ ∩ −A(K)+

which is a contradiction.

There is a natural norm on A(K)∗: the norm of linear functionals.

Definition 16. The norm of linear functionals on A(K)∗ is given for ψ ∈ A(K)∗ as

‖ψ‖∗ = sup{〈ψ, f〉 : ‖f‖sup ≤ 1}.
Proposition 8. ‖ · ‖∗ is a norm.

Proof. To prove that ‖ · ‖∗ is a norm we will show that it is positive-definite, homogeneous and
subadditive. First of all note that if ‖ψ‖∗ ≥ 0 as we always have 〈ψ, 0〉 = 0. Now assume that
‖ψ‖∗ = 0 but assume that there is f ∈ A(K) such that 〈ψ, f〉 6= 0, i.e. that ψ 6= 0. We can
assume 〈ψ, f〉 > 0 as if 〈ψ, f〉 < 0 then simply replace f by −f . Now let f ′ = f

‖f‖sup , then we have
‖f ′‖ = 1 and we must have 〈ψ, f ′〉 ≤ 0 which implies 〈ψ, f〉 = 0 which is a contradiction. Hence
‖ψ‖∗ = 0 implies ψ = 0.

Let α ∈ R then we have

‖αψ‖∗ = sup{〈αψ, f〉 : ‖f‖sup ≤ 1}
= sup{|α|〈ψ, f〉 : ‖f‖sup ≤ 1}
= |α|‖ψ‖∗

as we can always replace f by −f in case of α < 0.
At last, let ψ,ϕ ∈ A(K)∗, then we have

‖ψ + ϕ‖∗ = sup{〈ψ + ϕ, f〉 : ‖f‖sup ≤ 1}
= sup{〈ψ, f〉+ 〈ϕ, f〉 : ‖f‖sup ≤ 1}
≤ ‖ψ‖∗ + ‖ϕ‖∗.

The supremum norm on A(K)∗ is useful in characterizing positive elements.

Proposition 9. Let ψ ∈ A(K)∗ then we have ψ ∈ A(K)∗+ if and only if ‖ψ‖∗ = 〈ψ, 1〉.
Proof. Let ψ ∈ A(K)∗+ then there are x ∈ K and λ ∈ R+ such that ψ = λx and we have
〈ψ, 1〉 = λ. Assume that ‖ψ‖∗ > λ, then there is f ∈ A(K) such that ‖f‖sup ≤ 1 but 〈x, f〉 > 1
which is a contradiction. So we have ‖ψ‖∗ = λ.

Let ‖ψ‖∗ = 〈ψ, 1〉 and let f ∈ A(K) such that ‖1− f‖sup ≤ 1 then we

〈ψ, f〉 = 〈ψ, 1〉 − 〈ψ, 1− f〉 = ‖ψ‖∗ − 〈ψ, 1− f〉 ≥ 0.

it follows that for every f ∈ E(K) we have 〈ψ, f〉 ≥ 0 which implies ψ ≥ 0.

Corollary 5. Let x ∈ K then ‖x‖∗ = 1.

Proof. Since K ⊂ A(K)∗+ we have ‖x‖∗ = 〈x, 1〉 = 1.
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2.5 No-Restriction hypothesis
So far we have been using the so-called No-Restriction hypothesis. The No-Restriction hypothesis
states that every measurement that is mathematically well defined can be performed. Clearly this
is a rather problematic assumption when constructing a physical theory as the physical theory
does not have to be aware of our mathematics. On the other hand there are no known real
world examples of theories that would violate the No-Restriction hypothesis. It may be that No-
Restriction hypothesis follows from a more fundamental and better motivated axioms of a given
theory as in [24]. The explanation we are going to provide is more pragmatic: if we assume
No-Restriction hypothesis then we can prove results for all measurements and if one wishes to
introduce restrictions later then it is only needed to check whether one has restricted to the point
when the measurements needed for the proof are not in the theory anymore or whether we still
have them.

There are two more important points to take into accounts when considering theories with
restrictions. As first, let m ∈ (0, 1

2 ], then we can restrict the theory to include only effects that
are affine functions f : K → [m, 1−m]. One can see that this is the same as assuming that there
is some minimal non-zero amount of white noise present in every measurement, quantified my m.
But now one can see that the state space is not anymore uniquely specified by the restricted effect
algebra so we should deal with a class of equivalence of state spaces instead of a fixed state space
or assume that the state space is fixed by some other principle. Hence we either have to take
into account the possible equivalence classes of state spaces or we have to introduce other higher
principles to pick a unique state space.

The other possible problem with introducing restrictions is consistency. Given a set of mea-
surements we can always construct new measurements by classical post-processing of results and
randomization, together this is known as simulating measurements [25–28]. If one wishes to in-
troduce restrictions then one has to be very careful not to exclude a measurement that can be
simulated by measurements included in the theory as this would violate basic logical consistency.

For a more in-depth treatment of theories with restrictions see also [29]. We are going to keep
assuming the No-Restriction hypothesis.

2.6 Examples
We are going to present several examples of theories. Many of these examples are important as
they will show that the framework of GPTs is broad enough to describe many of the well-known
state spaces. We also recommend the reader to familiarize themselves with the examples and how
they are constructed as they can shed some light on the constructions we have presented in Sec.
2.
Example 1 (Classical theory). The first example is the most basic one. Let Sn denote a simplex
with n vertexes, that is Sn = conv ({s1, . . . , sn}) where s1, . . . , sn are affinely independent points,
i.e. for αi ∈ R, i ∈ {1, . . . , n}, ∑n

i=1 αi = 0 we have
∑n
i=1 αisi = 0 if and only if αi = 0 for all

i ∈ {1, . . . , n}. The states s1, . . . , sn also form a basis of A(Sn)∗.
We will refer to systems with a state space that is a simplex as classical system or classical

state space and we will refer to every other state space as non-classical.
The effect algebra E(Sn) is generated by the functions b1, . . . , bn that are given as

〈si, bj〉 = δij

for all i, j ∈ {1, . . . , n} and where δij is the Kronecker delta. It follows that bi ≥ 0 for all
i ∈ {1, . . . , n} as the points s1, . . . , sn are affinely independent. Moreover the functions b1, . . . , bn
form a basis of A(Sn) as for every function f ∈ A(Sn) we have

f =

n∑

i=1

〈si, f〉bi.

Especially it follows that we have

1 =

n∑

i=1

bi.
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Now it is straightforward to see that for every f ∈ A(Sn)+ there are µ1, . . . , µn ∈ R+ such that

f =

n∑

i=1

µibi

and we have f ∈ E(Sn) if and only if 0 ≤ µi ≤ 1. One can also show that these properties
characterize the effect algebras of classical theories [21]. Moreover one can easily see that f ∈ E(K)
is an extreme point of the effect algebra if and only if µi ∈ {0, 1} for all i ∈ {1, . . . , n}. It also
follows that every point s ∈ Sn has a unique decomposition to a convex combination of the extreme
points s1, . . . , sn, which is given as

s =

n∑

i=1

〈s, bi〉si.

It is easy to check the validity of the equation above; let f ∈ E(Sn) be given as f =
∑n
i=1 µibi,

then

〈s, f〉 =

n∑

i=1

µi〈s, bi〉 =

n∑

i=1

n∑

j=1

µi〈s, bj〉〈sj , bi〉 =

〈
n∑

j=1

〈s, bj〉sj , f
〉
.

It follows that we can identify every point s ∈ Sn with a probability distribution over the extreme
points s1, . . . , sn.

For n = 2 the state space S2 can be represented by a line. We are going to denote the extreme
points s0, s1 and we are going to use

s0 =

(
0
1

)
, s1 =

(
1
1

)
.

We are going to have only two functions that will generate E(S2) in the aforementioned way and
we are going to denote them b and 1− b as from Eq. (1) we will have that b+ (1− b) = 1 so the
notation is quite natural. We have

b =

(
1
0

)
, 1 =

(
0
1

)

where for ψ ∈ A(S2)∗ and f ∈ A(S),

ψ =

(
ψ1

ψ2

)
, f =

(
f1

f2

)

the duality is given as
〈ψ, f〉 = ψ1f1 + ψ2f2.

We are going to use the same duality of real finite dimensional vector spaces in other examples.
Now it is straightforward to check that we have

〈s0, b〉 = 0 〈s1, b〉 = 1

〈s0, 1− b〉 = 1 〈s1, 1− b〉 = 0

〈s0, 1〉 = 1 〈s1, 1〉 = 1

as we should. This state space is well known as it represents the classical bit, s0 and s1 represent
the two distinct states of the bit.

For n = 3 the state space S3 is a triangle. We are going to denote the extreme points s1, s2, s3

and we are going to use

s1 =




1
0
1


 , s2 =




0
1
1


 , s3 =




0
0
1
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Figure 1: The simplex S3 presented in Ex. 1.

as depicted in Fig. 1. The effects b1, b2, b3 ∈ E(S3) generating the effect algebra are given as

b1 =




1
0
0


 , b2 =




0
1
0


 , b3 =



−1
−1
1


 .

The wire-frame model of the effect algebra E(S3) is depicted in Fig. 2.

Example 2 (Quantum theory). Let H denote a finite dimensional complex Hilbert space. We will
use the Dirac notation to denote the vectors |ψ〉, |ϕ〉 ∈ H, we will denote the inner product as
〈ψ|ϕ〉 and the vector norm as ‖ψ‖ =

√
〈ψ|ψ〉. Let Bh(H) denote the set of self-adjoint operators

on H. We say that an operator A ∈ Bh(H) is positive semi-definite if and only if for all |ψ〉 ∈ H
we have 〈ψ|A|ψ〉 ≥ 0 and we write A ≥ 0. For A,B ∈ Bh(H) we write A ≥ B if and only if
A−B ≥ 0. Tr(A) will denote the trace of A ∈ Bh(H). The set of states on H is

DH = {ρ ∈ Bh(H) : ρ ≥ 0,Tr(ρ) = 1},

the effect algebra is
E(H) = {E ∈ Bh(H) : 0 ≤ E ≤ 1},

where 1 denotes the identity matrix and the value of an effect E on a state ρ is given by the
Hilbert-Schmidt inner product as Tr(ρE). It is straightforward to see that pure states are the one
dimensional projectors, i.e. operators of the form |ψ〉〈ψ| where |ψ〉 ∈ H, ‖ψ‖ = 1. Let A ∈ Bh(H),
then from Tr(|ψ〉〈ψ|A) = 〈ψ|A|ψ〉 it follows that E(H) really is the effect algebra corresponding to
the state space DH. Moreover one can again see that the extreme points of E(H) are projectors,
that is operators P ∈ Bh(H) such that P = P 2.

This is a well known example of a finite-dimensional quantum theory referred to as qudit state
space. If dim(H) = 2 then this corresponds to the qubit state space, the quantum equivalent of
the classical bit. In this case DH can be represented by a ball in R3, the so-called Bloch sphere.
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Figure 2: The effect algebra E(S3) corresponding to the simplex S3 presented in Ex. 1.
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Figure 3: The square state space S presented in Ex. 3.
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Figure 4: The effect algebra E(S) corresponding to the square state space S presented in Ex. 3.

Example 3 (Square state space). Let S = conv({s00, s10, s01, s11}) where

s00 =




0
0
1


 s10 =




1
0
1




s01 =




0
1
1


 s11 =




1
1
1




are points such that s00 + s11 = s10 + s01, i.e. S is a square as depicted in Fig 3.
The wire-frame model of E(S) is depicted in Fig. 4. It is rather easy to find the extreme points

of E(S). Consider the general function f ∈ A(S) to be given as

f =



a
b
c




for some a, b, c ∈ R. f ∈ E(S) is equivalent to requiring 0 ≤ 〈sij , f〉 ≤ 1 for i, j ∈ {0, 1} as sij are
the extreme points of S, we get

0 ≤ c ≤ 1, 0 ≤ a+ c ≤ 1,

0 ≤ b+ c ≤ 1, 0 ≤ a+ b+ c ≤ 1.

To get extreme points we will assume that some of the inequalities become equalities and this will
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yield the results. Let us denote

fx =




1
0
0


 1− fx =



−1
0
1




fy =




0
1
0


 1− fy =




0
−1
1




1 =




0
0
1


 0 =




0
0
0


 .

Assume c = 0 and a = 0, then we can have both b = 0 and b = 1, this gives 0 and fy. Assume
c = 0 and a = 1, then we must have b = 0 and we get fx. Let c = 1 and a = 0, then we can either
have b = 0 or b = −1 which yields 1 and 1 − fy respectively. If c = 1 and a = −1 then b = 0
follows and we get 1− fx. This exhausts all of the possibilities. Hence the extreme points of the
effect algebra E(S) are fx, fy, 1− fx, 1− fy, 0 and 1.
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3 Products of state spaces
In this section we are going to explore several standard constructions of products of state spaces.
The most well known product is tensor product, that corresponds to creating a joint system of two
systems. The motivation for using tensor products to describe the joint system of two systems is
going to be similar to [30–33] and mathematically our explanation is going to be based on [3].

Assume that we have two systems KA and KB which are separated; our task is to find a joint
description of both systems, i.e. to find the joint system KAB . Let f ∈ E(KA) and g ∈ E(KB),
then the joint description of KA and KB must be capable of describing the situation when we
prepare x ∈ KA and y ∈ KB at the beginning of the experiment. Moreover we argue that for
x1, x2 ∈ K and λ ∈ [0, 1] it should be the same whether we prepare λx1 + (1 − λ)x2 ∈ KA and
y ∈ KB or whether with probability λ we prepare x1 ∈ KA and y ∈ KB and with probability
(1−λ) we prepare x2 ∈ KA and y ∈ KB . It follows that the preparation procedure of two systems
should be affine in each state, and when extended as a map to A(KA)∗ and A(KB)∗ it should be
bilinear. Since effects should map the bilinear preparation procedures to probabilities, they have
to be elements of the dual vector space to bilinear preparations procedures and the dual is the
tensor product of corresponding vector spaces. It follows then that the full set of states of the
joint system KAB must be described by the tensor product.

3.1 Tensor products
The most notable fact about tensor products of state spaces is that it is not uniquely defined but
it has to be specified by the theory. Let VA, VB be finite-dimensional real vector spaces and let
KA ⊂ VA, KB ⊂ VB be two state spaces. We will denote VA⊗VB the tensor product of the vector
spaces. Note that for v ∈ VA, w ∈ VB , ψ ∈ V ∗A and ϕ ∈ V ∗B we have

〈ψ ⊗ ϕ, v ⊗ w〉 = 〈ψ, v〉〈ϕ,w〉.

Now assume that we want to construct a joint state space of the systems described by KA and
KB and let x ∈ KA, y ∈ KB . We clearly want the joint state space to contain at least all possible
states that describe the situation when the system KA is prepared in the state x and the system
KB is prepared in the state y. This motivates the following definition

Definition 17. The minimal tensor product of the state spaces KA and KB is

KA⊗̇KB ⊂ VA ⊗ VB

defined as
KA⊗̇KB = conv{x⊗ y : x ∈ KA, y ∈ KB}.

Proposition 10. KA⊗̇KB is a state space.

Proof. It is straightforward to see that KA⊗̇KB is convex by definition and from [3, Prop. 2.2] it
follows that it is closed. It is also easy to see that it is bounded as KA⊗̇KB ⊂ A(KA)∗ ⊗A(KB)∗

and (A(KA)∗⊗A(KB)∗)∗ = A(KA)⊗A(KB) and any functional of the form f⊗g ∈ A(KA)⊗A(KB)
is bounded on KA⊗̇KB .

We can apply the same logic to the effect algebras: let f ∈ E(KA) and g ∈ E(KB), then the
minimal tensor product of the effect algebras, that will describe the measurements on the joint
system, must at least contain the effect that describes that we apply f to KA and g to KB . This
again motivates the following.

Definition 18. The minimal tensor product of the effect algebras E(KA) and E(KB) is

E(KA)⊗̇E(KB) ⊂ A(KA)⊗A(KB)

defined as
E(KA)⊗̇E(KB) = conv{f ⊗ g : f ∈ E(KA), g ∈ E(KB)}.
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Proposition 11. E(KA)⊗̇E(KB) is a closed linear effect algebra, i.e. it is a linear effect algebra
in the sense of Def. 8.

Proof. Consider the convex cone P generated by E(KA)⊗̇E(KB), i.e. P = conv({f ⊗ g : f ∈
A(KA)+, g ∈ A(KB)+}). It is again straightforward to see that P is closed as in the proof of Prop.
10. Now consider the interval [0, 1⊗1] ⊂ P , we are going to show that [0, 1⊗1] = E(KA)⊗̇E(KB).
Let f ⊗ g ∈ [0, 1 ⊗ 1], then it follows that we must have ‖f‖sup‖g‖sup ≤ 1, 1

‖f‖sup f ∈ E(KA).
1

‖g‖sup
∈ E(KB) follows from f ≥ 0 and g ≥ 0 which we can assume without the loss of generality.

Now assume that we have
∑n
i=1 fi ⊗ gi ∈ [0, 1 ⊗ 1] and assume that fi ∈ A(KA)+, gi ∈ A(KB)+

for all i ∈ {1, . . . , n}, one can see that every element from [0, 1⊗ 1] is of this form. It follows that
we must have ∑

i=1

‖fi‖sup‖gi‖sup ≤ 1

and

∑

i=1

fi ⊗ gi =
∑

i=1

‖fi‖sup‖gi‖sup

(
1

‖f‖sup
fi

)
⊗
(

1

‖g‖sup
gi

)
+

(
1−

∑

i=1

‖fi‖sup‖gi‖sup

)
0⊗ 0.

It follows that
∑
i=1 fi⊗ gi ∈ E(KA)⊗̇E(KB) as we have just expressed

∑
i=1 fi⊗ gi as a suitable

convex combination.

Now we have defined a tensor product of state spaces and tensor product of effect algebras but
clearly E(KA)⊗̇E(KB) doesn’t have to be the effect algebra corresponding to KA⊗̇KB , i.e. we
can have E(KA)⊗̇E(KB) 6= E(KA⊗̇KB).

Definition 19. The maximal tensor product of state spaces KA and KB is KA⊗̂KB ⊂ VA ⊗ VB
defined as

KA⊗̂KB = S(E(KA)⊗̇E(KB))

and the maximal tensor product of the effect algebras E(KA) and E(KB) is E(KA)⊗̂E(KB) ⊂
A(KA)⊗A(KB) defined as

E(KA)⊗̂E(KB) = E(KA⊗̇KB).

We do not have to prove that KA⊗̂KB is a well defined state space as this follows from the
definition. The same holds for E(KA)⊗̂E(KB).

Why we call these tensor products maximal is because if we would want to extend KA⊗̂KB

by adding a point v ∈ VA ⊗ VB , then according to Thm. 4 there would be f ∈ E(KA)⊗̇E(KB)
such that 〈v, f〉 < 0 and we have already argued that the effect algebra of the joint system should
contain E(KA)⊗̇E(KB). The same holds for E(KA)⊗̂E(KB), extending the effect algebra by
adding points would result in some states from KA⊗̇KB not being a well-defined states. The
following is an immediate result.

Proposition 12. We have

KA⊗̇KB ⊂ KA⊗̂KB ,

E(KA)⊗̇E(KB) ⊂ E(KA)⊗̂E(KB).

Proof. The proof is straightforward. Let x ∈ KA, y ∈ KB and f ∈ E(KA), g ∈ E(KB), then

〈x⊗ y, f ⊗ g〉 = 〈x, f〉〈y, g〉 ≥ 0

follows immediately. This shows that x⊗y ∈ KA⊗̂KB and f⊗g ∈ E(KA)⊗̂E(KB). As the extreme
points of KA⊗̇KB are by definition of the form x⊗ y and the extreme points of E(KA)⊗̇E(KB)
are again by definition of the form f ⊗ g it follows that we must have KA⊗̇KB ⊂ KA⊗̂KB and
E(KA)⊗̇E(KB) ⊂ E(KA)⊗̂E(KB).

The last tensor product to define is the so-called real tensor product. This tensor product is
not uniquely defined, but has to be given by the underlying theory.
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Definition 20. The real tensor product of state spaces KA and KB is denoted as KA⊗̃KB and
it is a state space such that

KA⊗̇KB ⊂ KA⊗̃KB ⊂ KA⊗̂KB .

Note that the name real tensor product was introduced by the author. In some publications
KA⊗̃KB is referred to as composite system [32] and sometimes the definition coincides with
the term parallel composition [34], but these terms could also include more general or different
concepts.

Whenever needed in the future, we will assume that there is a well defined notion of real
tensor product. We will also introduce the real tensor product of effect algebras for the sake of
completeness as the effect algebra corresponding to the real tensor product of the state spaces.

Definition 21. We define the real tensor product of effect algebras E(KA) and E(KB) as

E(KA)⊗̃E(KB) = E(KA⊗̃KB).

We will also define the notions of separable and entangled states.

Definition 22. We say that a state x ∈ KA⊗̃KB is separable, if we have x ∈ KA⊗̇KB . We say
that a state x ∈ KA⊗̃KB is entangled if it is not separable, i.e. if we have x ∈ KA⊗̃KB \KA⊗̇KB .

It may feel unsatisfactory that we have to define some extra composition rule for given theories
but this is what we do in quantum theory as demonstrated by the following example.
Example 4. Let H be a Hilbert space and let DH denote the corresponding state space. In
quantum theory we define the real tensor product to be DH⊗̃DH = DH⊗H. The set DH⊗̇DH is
the set of separable states and the set DH⊗̂DH is the set of entanglement witnesses, that is for
any entangled state ρ ∈ DH⊗H there is some A ∈ DH⊗̂DH such that Tr(ρA) < 0 [6, Theorem
6.39].

In a similar fashion to state spaces and effect algebras we can define tensor products of cones.

Definition 23. Let V,W be finite-dimensional real vector spaces and let P ⊂ V and Q ⊂ W be
convex, generating and pointed cones. Let P ∗ ⊂ V ∗ and Q∗ ⊂ W ∗ be the dual cones, i.e. the
cones of positive linear functionals. The minimal tensor product of P and Q is denoted P ⊗̇Q and
it is defined as

P ⊗̇Q = conv({p⊗ q : p ∈ P, q ∈ Q})
and the maximal tensor product of the cones is denoted as P ⊗̂Q and it is defined as the dual cone
to P ∗⊗̇Q∗, i.e.

P ⊗̂Q = (P ∗⊗̇Q∗)∗ = {ψ ∈ V ⊗W : 〈p′ ⊗ q′, ψ〉 ≥ 0,∀p′ ∈ P ∗,∀q′ ∈ Q∗}.
Proposition 13. Let KA and KB be state spaces, then we have

A(KA)∗+⊗̇A(KB)∗+ = A(KA⊗̇KB)∗+,

A(KA)∗+⊗̂A(KB)∗+ = A(KA⊗̂KB)∗+.

Proof. Let ϕ ∈ A(KA)∗+⊗̇A(KB)∗+ such that ϕ 6= 0, then 1
〈ϕ,1⊗1〉ϕ is separable and normalized,

so by Thm. 5 we have 1
〈ϕ,1⊗1〉ϕ ∈ KA⊗̇KB . It follows that A(KA)∗+⊗̇A(KB)∗+ = A(KA⊗̇KB)∗+.

A(KA)∗+⊗̂A(KB)∗+ = A(KA⊗̂KB)∗+ follows in a similar manner.

Proposition 14. We have span(A(KA)∗+⊗̇A(KB)∗+) = span(A(KA)∗+⊗̂A(KB)∗+), i.e. both
the minimal and maximal tensor products of the cones generate the same vector space.

Proof. By definition we have span(E(KA⊗̂KB)) = span(E(KA)⊗̇E(KB)) = A(KA)⊗A(KB) and
we must have

span(A(KA)∗+⊗̂A(KB)∗+) = (A(KA)⊗A(KB))∗ = A(KA)∗ ⊗A(KB)∗

= span(A(KA)∗+⊗̇A(KB)∗+).

Corollary 6. We have span(A(KA)+⊗̇A(KB)+) = span(A(KA)+⊗̂A(KB)+).

Proof. The result follows from Prop. 14 by looking at the linear hulls of the dual cones.
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3.2 Partial trace
We will proceed with defining the generalization of partial trace. It is clear that all of the effect
algebras E(KA)⊗̇E(KB), E(KA)⊗̃E(KB) and E(KA)⊗̂E(KB) have the same unit effect 1 ⊗ 1.
Let idA : KA → KA be the identity map and f ∈ E(KB), we are going to be interested in the
map idA⊗f : KA⊗̃KB → KA.

Definition 24. Let x ∈ KA⊗̃KB and f ∈ A(KB), then we define (idA⊗f)(x) ∈ A(KA)∗ to be
the unique functional such that for all g ∈ A(KA) we have

〈(idA⊗f)(x), g〉 = 〈x, g ⊗ f〉.

The following is immediate.

Proposition 15. Let f ∈ A(KB) then idA⊗f is an affine map.

Proof. Let x, y ∈ KA⊗̃KB , λ ∈ [0, 1] and g ∈ A(KA), we have

〈(idA⊗f)(λx+ (1− λ)y), g〉 = 〈(λx+ (1− λ)y, g ⊗ f〉
= λ〈x, g ⊗ f〉+ (1− λ)〈y, g ⊗ f〉
= λ〈(idA⊗f)(x), f〉+ (1− λ)〈(idA⊗f)(y), g〉

so (idA⊗f)(λx+ (1− λ)y) = λ(idA⊗f)(x) + (1− λ)(idA⊗f)(y) follows.

One can also extend idA⊗f to a linear map A(KA)∗⊗A(KB)∗ → A(KA)∗. In a similar fashion
we can define g ⊗ idB : KA⊗̃KB → KB for any g ∈ A(KA). Besides that, the map is also linear
in f as shown bellow.

Proposition 16. Let f1, f2 ∈ A(KB) and α ∈ R, then we have

idA⊗(f1 + αf2) = idA⊗f1 + α idA⊗f2.

Proof. Let x ∈ KA⊗̃KB and g ∈ A(KA), we have

〈(idA⊗(f1 + αf2))(x), g〉 = 〈x, g ⊗ (f1 + αf2)〉
= 〈x, g ⊗ f1〉+ α〈x, g ⊗ f2〉
= 〈(idA⊗f1)(x), g〉+ α〈(idA⊗f2)(x), g〉.

Proposition 17. Let f ∈ A(KB)+ then for every x ∈ KA⊗̃KB we have (idA⊗f)(x) ∈ A(KA)∗+.
Moreover if f ∈ E(KB), then there are y ∈ KA and λ ∈ [0, 1] such that (idA⊗f)(x) = λy.

Proof. To see that (idA⊗f)(x) ∈ A(KA)∗+ just note that 〈x, g ⊗ f〉 ≥ 0 for all g ∈ A(KB)+. It
follows that we have (idA⊗f)(x) = λy for some y ∈ KA and λ ∈ R+ as KA is a base of the cone
A(KA)∗+.

Now assume that f ∈ E(K), we have

λ = 〈λy, 1〉 = 〈(idA⊗f)(x), 1〉 = 〈x, 1⊗ f〉 ≤ 1

which concludes the proof.

We are now going to consider the special case of the map idA⊗1. Let x ∈ KA⊗̃KB , then we
will call (idA⊗1)(x) and (1⊗ idB)(x) the marginals of x and we are going to call the map idA⊗1
the partial trace as in quantum theory it corresponds to the partial trace [6, Definition 2.68].

Proposition 18. Let x ∈ KA⊗̃KB then (idA⊗1)(x) ∈ KA.

Proof. As 1 ∈ E(KB) by definition, we already know that (idA⊗1)(x) ∈ A(KA)∗+ and the result
follows from 〈(idA⊗1)(x), 1〉 = 〈x, 1⊗ 1〉 = 1 by Thm. 5.

The following result is important and useful in many calculations.
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Theorem 6 (Barnum, Barrett, Leifer, Wilcze). Let x ∈ KA⊗̃KB and assume that (idA⊗1)(x) = y
is a pure state, then x = y ⊗ z for some z ∈ KB.

Proof. The proof can be found in [35, Lemma 3]. We will provide exactly the same proof, only
formulated in terms that we have introduced so far.

Let f ∈ E(KB) then by Prop. 4 also 1− f ∈ E(KA). We have

y = (idA⊗1)(x) = (idA⊗f)(x) + (idA⊗(1− f))(x)

and according to Prop. 17 we have (idA⊗f)(x) = λw and (idA⊗(1 − f))(x) = λ′w′ for some
w,w′ ∈ KA and λ, λ′ ∈ R+. From 1 = 〈y, 1〉 = λ + λ′ we get λ′ = 1 − λ so now we have
y = λw + (1− λ)w′. Since y is pure we get w = w′ = y and we have (idA⊗f)(x) = λy. Moreover
λ = 〈x, 1⊗ f〉 = 〈(1⊗ idB)(x), f〉.

Let g ∈ E(KA), then we have

〈x, g ⊗ f〉 = 〈(idA⊗f)(x), g〉 = λ〈y, g〉
= 〈(1⊗ idB)(x), f〉〈(idA⊗1)(x), g〉
= 〈(idA⊗1)(x)⊗ (1⊗ idB)(x), g ⊗ f〉.

It follows that x = (idA⊗1)(x)⊗ (1⊗ idB)(x) = y ⊗ z for z = (1⊗ idB)(x).

3.3 Existence of entanglement
A natural question may emerge: given two state spaces KA and KB , do we have KA⊗̇KB 6=
KA⊗̂KB? This is an open problem and it is conjectured that KA⊗̇KB 6= KA⊗̂KB if and only if
both KA and KB are non-classical state spaces. We are going to present the current state of the
research.

Proposition 19. Let Sn be a simplex and K any state space, then K⊗̇Sn = K⊗̂Sn.
Proof. Let x ∈ K⊗̂Sn and let s1, . . . , sn be the extreme points of Sn, then {s1, . . . , sn} is a base
of A(Sn)∗ which means that we have

x =

n∑

i=1

ϕi ⊗ si

for some ϕi ∈ A(K)∗. Using the result of Prop. 17 we get

ϕi = (id⊗bi)(x) ∈ A(K)∗+

which shows that x ∈ K⊗̇Sn.
Note that the result above also holds for the positive cones and is independent of the choice of

the base.

Corollary 7. Let V be a real finite-dimensional vector space, let P ⊂ V be a pointed, generating,
convex cone and let Sn be a simplex. We have

P ⊗̇A(Sn)∗+ = P ⊗̂A(Sn)∗+.

Proof. Let K ⊂ P be a base of P , then K⊗̂Sn is a base of P ⊗̂A(Sn)∗+ and K⊗̇Sn is a base of
P ⊗̇A(Sn)∗+. The result follows from Prop. 19.

Proposition 20. Let K be a non-classical state space and let S be the square state space, then

K⊗̇S 6= K⊗̂S.
Proof. See [36] for a proof.

Proposition 21. Let KA and KB be non-classical polytopes, i.e. both KA and KB are not
simplexes, then

KA⊗̇KB 6= KA⊗̂KB .

Proof. The proof was communicated to the author by [37].

There is also proof for centrally symmetric state spaces [38].
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3.4 Multipartite entanglement
As we are using tensor products to describe bipartite systems it is also worth mentioning some of
the specifics of describing multipartite systems, where number of parties is larger than 2. First
of all there is the logical assumption of associativity of the real tensor product. Let KA, KB and
KC be state spaces, then we require

(KA⊗̃KB)⊗̃KC = KA⊗̃(KB⊗̃KC)

and in this case we denote the tripartite state space KA⊗̃KB⊗̃KC . It is straightforward to prove
that the minimal and maximal tensor products are associative as well as the real tensor product
used in quantum theory.

Proposition 22. Let KA, KB, KC be state spaces, then

(KA⊗̇KB)⊗̇KC = KA⊗̇(KB⊗̇KC).

and
(KA⊗̂KB)⊗̂KC = KA⊗̂(KB⊗̂KC).

Proof. We are going to begin with the minimal tensor products. By definition the set of extreme
points of KA⊗̇KB is

ext(KA⊗̇KB) = {x⊗ y : x ∈ ext(KA), y ∈ ext(KB)}.

We also have

ext((KA⊗̇KB)⊗̇KC) = {w ⊗ z : w ∈ ext(KA⊗̇KB), z ∈ ext(KC)}
= {x⊗ y ⊗ z : x ∈ ext(KA), y ∈ ext(KB), z ∈ ext(KC)}.

By the same argumentation we get

ext(KA⊗̇(KB⊗̇KC)) = {x⊗ y ⊗ z : x ∈ ext(KA), y ∈ ext(KB), z ∈ ext(KC)}

and the associativity of the minimal tensor product follows by Thm. 2.
To show the associativity of the maximal tensor product, note that

(KA⊗̂KB)⊗̂KC = S(E(S(E(KA)⊗̇E(KB)))⊗̇E(KC)).

E(S(E(K))) = E(K) for any state space K as a result of Thm. 5 and we get

(KA⊗̂KB)⊗̂KC = S((E(KA)⊗̇E(KB))⊗̇E(KC))

= S(E(KA)⊗̇E(KB)⊗̇E(KC))

where we argue that in the last step the associativity of minimal tensor products of effect algebras
follows in the same way as associativity of the minimal tensor product of state spaces. By the
same argumentation we get

KA⊗̂(KB⊗̂KC) = S(E(KA)⊗̇E(KB)⊗̇E(KC))

which concludes the proof.

Proposition 23. The real tensor product used in quantum theory as introduced in Ex. 4 is
associative.

Proof. We have

(DH⊗̃DH)⊗̃DH = DH⊗H⊗̃DH = DH⊗H⊗H = DH⊗̃DH⊗H = DH⊗̃(DH⊗̃DH).

It is tricky to define the separable and entangled states in the multipartite case. There might
be states where two of the parties are entangled, but not all three and there might be states where
all three parties are entangled but but none of the bipartite marginals of the state is entangled.
These problems already manifest in quantum theory, see [6] for a short review.
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3.5 Direct product and direct convex sum
At last, we will review other constructions with state spaces and effect algebras: the direct product
and direct convex sum. Let V1, V2 be real, finite-dimensional vector spaces, then by V1 × V2 we
will denote their Cartesian product.

Definition 25. Let KA ⊂ VA and KB ⊂ VB be state spaces then the direct product of KA and
KB is a state space KA ×KB ⊂ VA × VB given as

KA ×KB = {(x, y) : x ∈ KA, y ∈ KB}

with the convex combinations defined for x1, x2 ∈ KA, y1, y2 ∈ KB and λ ∈ [0, 1] as

λ(x1, y1) + (1− λ)(x2, y2) = (λx1 + (1− λ)x2, λy1 + (1− λ)y2).

Proposition 24. KA ×KB is a state space.

Proof. KA ×KB is convex by definition. It is rather easy to see that it is also closed as KA and
KB are closed [4, Proposition 8.1.4] and one can show in a very similar way that KA × KB is
bounded as well.

The operational interpretation of the direct product of state spaces is as follows: assume that
we want to keep track of two distinct possibilities of events, the first described by x ∈ KA and
the second described by y ∈ KB so we can adopt the handy notation (x, y). This gives rise to
the direct product of state spaces. Notice that we have already encountered the direct product of
state spaces as S = S2 × S2.

Definition 26. Let KA ⊂ VA and KB ⊂ VB be state spaces then the direct convex sum of KA

and KB is a state space KA ⊕KB given as

KA ⊕KB = {(λx, (1− λ)y) : x ∈ KA, y ∈ KB , λ ∈ [0, 1]}

with the convex combinations defined for x1, x2 ∈ KA, y1, y2 ∈ KB and λ1, λ2, µ ∈ [0, 1] as

µ(λ1x1, (1− λ1)y1) + (1− µ)(λ2x2, (1− λ2)y2) =

(µλ1x1 + (1− µ)λ2x2, µ(1− λ1)y1 + (1− µ)(1− λ2)y2).

Proposition 25. KA ⊕KB is a state space.

Proof. We are going to show that KA ⊕KB is the base of the cone

A(KA)∗+ ×A(KB)∗+ = {(λx, µy) : x ∈ KA, y ∈ KB , λ, µ ∈ R+}.

It is immediate that A(KA)∗+ ×A(KB)∗+ is closed convex cone. A(KA)∗+ ×A(KB)∗+ generates
the vector space A(KA)∗ × A(KB)∗ since A(KA)∗+ and A(KB)∗+ are generating. To show that
A(KA)∗+×A(KB)∗+ is pointed let (v, w) ∈ A(KA)∗+×A(KB)∗+ and−(v, w)A(KA)∗+×A(KB)∗+,
we get v ∈ A(KA)∗+ ∩ (−A(KA)∗+) and w ∈ A(KB)∗+ ∩ (−A(KB)∗+). Since both A(KA)∗+ and
A(KB)∗+ are pointed we get that (v, w) = (0, 0).

Let (1, 1) ∈ A(KA)+ ×A(KB)+, then

KA ⊕KB = {(λx, µy) ∈ A(KA)∗+ ×A(KB)∗+ : 〈(λx, µy), (1, 1)〉 = 1}

because 〈(λx, µy), (1, 1)〉 = λ+ µ. It follows that for (λx, µy) ∈ A(KA)∗+ ×A(KB)∗+ we have

(λx, µy) = (λ+ µ)

(
λ

λ+ µ
x,

µ

λ+ µ
y

)
= 〈(λx, µy), (1, 1)〉

(
λ

λ+ µ
x,

µ

λ+ µ
y

)

so KA ⊕KB is a base of the cone A(KA)+ ×A(KB)+.
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The interpretation of direct convex sum is that we want to describe a preparation such that
with a probability λ we get x ∈ KA and with the probability 1−λ we get y ∈ KB . This gives rise
to a formal convex combination (λx, (1−λ)y). This is knonw in quantum theory as superselection
rules [39].

We will proceed with constructing the effect algebras for the state spaces KA×KB and KA⊕
KB . It is easier to characterize E(KA ⊕ KB) so we will begin there. Let (ψ,ϕ) ∈ A(KA)∗ ×
A(KB)∗ then from the trivial (ψ,ϕ) = (ψ, 0) + (0, ϕ) and from the results of Prop. 7 we get that
A(KA ⊕KB)∗ = A(KA)∗ ×A(KB)∗. The dual vector space is A(KA)×A(KB) with the positive
cone

A(KA)+ ×A(KB)+ = {(f, g) : f ∈ A(KA)+, g ∈ A(KB)+}.
To find the constant function consider the following: let x ∈ KA, y ∈ KB and λ ∈ [0, 1], then for
(f, g) ∈ A(KA)×A(KB) we have

〈(λx, (1− λ)y), (f, g)〉 = λ〈x, f〉+ (1− λ)〈y, g〉.

We require 〈(λx, (1−λ)y), (f, g)〉 = 1 for all x ∈ KA, y ∈ KB . If we assume λ = 0, we get f = 1; if
we assume λ = 1 we get g = 1. The unit effect is given as (1, 1). Now let (f, g) ∈ A(KA)×A(KB),
then we have (0, 0) ≤ (f, g) ≤ (1, 1) if and only if f ∈ E(KA) and g ∈ E(KB). We conclude that
E(KA⊕KB) is an effect algebra of ordered pairs of effects. This motivates the following definition.

Definition 27. The direct product of effect algebras E(KA) and E(KB) is denoted E(KA) ×
E(KB) and it is defined as

E(KA)× E(KB) = E(KA ⊕KB).

Of course we could have first defined the direct product of effect algebras as the set of ordered
pairs of effect as in [40], then proved that this is an effect algebra and then proved that E(KA)×
E(KB) = E(KA ⊕KB). We have chosen to define E(KA)× E(KB) to be equal to E(KA ⊕KB)
as we find it more convenient.

Now let us construct E(KA ×KB). Note that for every (x, y) ∈ KA ×KB we have

〈(x, y), (1,−1)〉 = 0

so for f1, f2 ∈ A(KA) and g1, g2 ∈ A(KB) such that (f1, f2) = (g1, g2) + α(1,−1) for some α ∈ R
we have

〈(x, y), (f1, f2)〉 = 〈(x, y), (g1, g2)〉.
This introduces a relation of equivalence ≈ on A(KA) × A(KB): let (f1, f2), (g1, g2) ∈ A(KA) ×
A(KB), then (f1, f2) ≈ (g1, g2) if (f1, f2) = (g1, g2) + α(1,−1) for some α ∈ R. It is easy to
see that ≈ is symmetric, reflexive and transitive. Let (A(KA) × A(KB))≈ denote the vector
space A(KA) × A(KB) factorized with respect to ≈, we will denote the equivalence class of the
element (f1, f2) ∈ A(KA)×A(KB) as (f1, f2)≈. It is clear that (A(KA)×A(KB))≈ must contain
E(KA×KB) as we have just removed a redundant degree of freedom. Let (A(KA)+×A(KB)+)≈
denote the naturally induced positive cone, one can check that the cone is convex, closed, pointed
and generating. The cone (A(KA)+ × A(KB)+)≈ gives rise to an ordering ≤≈ such that we
have (0, 0) ≤≈ (f1, f2)≈ if and only if (f1, f2)≈ ∈ (A(KA)+ × A(KB)+)≈. The unit effect is the
equivalence class of (1, 0) ≈ (0, 1) and we have

E(KA ×KB) = {(f1, f2)≈ ∈ (A(KA)×A(KB))≈ : (0, 0)≈ ≤≈ (f1, f2)≈ ≤≈ (1, 0)≈}.

This construction is actually rather similar to the direct convex sum of state spaces, although it
may not be obvious at first.

Definition 28. The direct convex sum of effect algebras E(KA) and E(KB) is denoted E(KA)⊕
E(KB) and is defined as

E(KA)⊕ E(KB) = E(KA ×KB).

Again, we could have introduced the abstract definition of direct convex hull of effect algebras
as in [40] and then proved that it is the same as the effect algebra on the direct product of state
spaces. Again, we argue that the used approach was more convenient.

31



Note that we can extend the presented definitions of direct products and direct convex sums
from two state spaces to any finite number of state spaces in a straightforward way. Moreover one
can also show that the operations of direct product and direct convex sum are associative.

At last we will present few more result concerning direct products and direct convex sums of
state spaces.

Proposition 26. The set of extreme points of KA ×KB is

ext(KA ×KB) = {(x, y) : x ∈ ext(KA), y ∈ ext(KB)}.

Proof. Let (x, y), (x1, y1), (x2, y2) ∈ KA ×KB such that for some λ ∈ [0, 1] we have

(x, y) = λ(x1, y1) + (1− λ)(x2, y2)

then also x = λx1 + (1 − λ)x2 and y = λy1 + (1 − λ)y2. If x ∈ ext(KA) and y ∈ ext(KB) we
get x1 = x2 = x and y1 = y2 = y so (x, y) = (x1, y1) = (x2, y2) and (x, y) ∈ ext(KA ×KB). If
(x, y) ∈ ext(KA ×KB) then we must have (x, y) = (x1, y1) = (x2, y2) so x1 = x2 = x, y1 = y2 = y
follows and we conclude that x ∈ ext(KA), y ∈ ext(KB).

Proposition 27. The set of extreme points of KA ⊕KB is given as

ext(KA ⊕KB) = {(x, 0) : x ∈ ext(KA)} ∪ {(0, y) : y ∈ ext(KB)}

Proof. Let (λx, (1− λ)y) ∈ KA ⊕KB for some x ∈ KA, y ∈ KB and λ ∈ [0, 1] then clearly

(λx, (1− λ)y) = λ(x, 0) + (1− λ)(0, y).

It follows that we have to require either λ = 0 or λ = 1. Moreover one can see that (x, 0) ∈
ext(KA ⊕ KB) if and only if x ∈ ext(KA) and similarly (0, y) ∈ ext(KA ⊕ KB) if and only if
y ∈ ext(KB).

Proposition 28. Let Sn be a simplex and let K be a state space, then

K⊗̇Sn = K ⊕K ⊕ . . .⊕K

where the sum on the right hand side contains exactly n copies of K.

Proof. Let s1, . . . , sn denote the extreme points of Sn, then every x ∈ K⊗̇Sn can be written as

x =

n∑

i=1

λiyi ⊗ si

where yi ∈ K and λi ∈ [0, 1] for all i ∈ {1, . . . , n} and
∑n
i=1 λi = 1. Since s1, . . . , sn is a basis

of A(Sn)∗ the decomposition is unique. It follows that we can identify x with (λ1y1, . . . , λnyn) ∈
K ⊕ . . .⊕K.

We can also use similar ideas to characterize state spaces that are direct convex sums of other
state spaces, see [41, Proposition 3.].
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4 Transformations
In this section we are going to introduce transformations of state spaces, which will include chan-
nels, measurements and operations. The main message of this section is that we are going to show
that all of the transformations can be understood as channels and that channels can naturally be
identified with elements of some tensor product.

4.1 Channels
Let KA and KB be state spaces, then channel Φ is a transformation that takes a state from KA

as input and outputs a state from KB . According to our interpretation of convex combinations
we must require that channels are affine maps. As a result of affinity we can extend the channel
to map A(KA)∗ to A(KB)∗ in a natural way, i.e. let ψ ∈ A(KA)∗ be such that for x, y ∈ KA and
λ, µ ∈ R+ we have ψ = λx − µy, then Φ(ψ) = λΦ(x) − µΦ(y). To see that this is well defined,
assume that

ψ = λx− µy = λ′x′ − µ′y′

for some x′, y′ ∈ KA and λ′, µ′ ∈ R+. If λ+ µ′ = 0 then ψ = 0 hence we can assume λ+ µ′ > 0.
We have

λ

λ+ µ′
x+

µ′

λ+ µ′
y′ =

λ′

λ+ µ′
x′ +

µ

λ+ µ′
y.

Note that λ+µ′ = λ′+µ as x, x′, y, y′ are all states, so we actually have the equality of two convex
combinations. From the affinity of Φ we get

Φ

(
λ

λ+ µ′
x+

µ′

λ+ µ′
y′
)

=
λ

λ+ µ′
Φ(x) +

µ′

λ+ µ′
Φ(y′)

and
Φ

(
λ′

λ+ µ′
x′ +

µ

λ+ µ′
y

)
=

λ′

λ+ µ′
Φ(x′) +

µ

λ+ µ′
Φ(y).

It follows that
λΦ(x)− µΦ(y) = λ′Φ(x′)− µ′Φ(y′)

so Φ is well defined. Moreover note that if ψ ≥ 0 then also Φ(ψ) ≥ 0, i.e. Φ is a positive map.
Also 1(ψ) = 1(Φ(ψ)), which can also be written as 1 = 1 ◦ Φ, where ◦ denotes the concatenation
of maps. We will call a map such that 1 ◦ Φ = 1 trace-preserving as this is the name used in
quantum theory.

Definition 29. A channel is an affine, positive and trace-preserving map. The set of all channels
mapping a state space KA to state space KB will be denoted C(KA → KB).

We are going to revisit the assumption of positivity in Subsec. 4.2 where we will discuss
complete positivity.

In what follows we will essentially use a construction similar to the ones that can be found in
[3] and we will identify channels with elements of some tensor product. We strongly recommend
the reader that may struggle to apprehend the following construction to look at the first chapter
of [3].

Let x ∈ KA and f ∈ E(KB) and consider a channel Φ : KA → KB and the expression 〈Φ(x), f〉.
On one hand we interpret this as that the effect f maps the state Φ(x) to probability, but on the
other hand we may also see Φ as a bilinear form that assigns the value of 〈Φ(x), f〉 to x and f .
Hence we may write 〈Φ(x), f〉 = 〈Φ, x⊗f〉 where we have identified the pair x and f with the linear
functional acting on the bilinear form Φ. Extending this expression by linearity we see that we
can identify a channel Φ : KA → KB with an element of (A(KA)∗⊗A(KB))∗ = A(KA)⊗A(KB)∗.
Then there are gi ∈ A(KA) and ψi ∈ A(KB)∗ for i ∈ {1, . . . , n} such that we have

Φ =
n∑

i=1

gi ⊗ ψi
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where we omitted an isomophism between the representations of Φ as a map and as an element
of the tensor product. For x ∈ KA we get

Φ(x) =

n∑

i=1

〈x, gi〉ψi.

Note that the functions gi nor the functionals ψi do not have to be positive, only the corresponding
map Φ is positive and trace-preserving. Φ is positive if an only if Φ(x) is positive for any x ∈ KA,
which is the same as requiring that for every f ∈ E(KB) we have

0 ≤ 〈Φ(x), f〉 = 〈Φ, x⊗ f〉 =

n∑

i=1

〈x, gi〉〈ψi, f〉.

It follows that we must have
Φ ∈ A(KA)+⊗̂A(KB)∗+.

Φ is trace preserving if and only if for all x ∈ KA we have
n∑

i=1

〈x, gi〉〈ψi, 1〉 = 1

which is equivalent to
n∑

i=1

gi〈ψi, 1〉 = 1 ◦ Φ = 1.

The above construction of assigning a vector in the tensor product to the channel is independent
of positivity or trace-preserving. Matter of fact any linear map L : A(KA)∗ → A(KB)∗ can be
identified with some vector from A(KA)⊗A(KB)∗.

For Φ1,Φ2 ∈ C(KA → KB) we can define the convex combination of the channels with λ ∈ [0, 1]
as the unique channel such that for x ∈ KA we have

(λΦ1 + (1− λ)Φ2)(x) = λΦ1(x) + (1− λ)Φ2(x).

Note that C(KA → KB) is not a base of A(KA)+⊗̂A(KB)∗+ as let f ∈ E(KA) be a non-constant
effect and let x ∈ KB , then f ⊗ x ∈ A(KA)+⊗̂A(KB)∗+ but it is not a multiple of any channel as
1 ◦ (f ⊗ x) = f . But clearly the set of channels KA → KB is a base of some smaller cone.

Proposition 29. Let C = span(C(KA → KB)) then C(KA → KB) is a base of the cone
(A(KA)+⊗̂A(KB)∗+) ∩ C.
Proof. Let ψ ∈ (A(KA)+⊗̂A(KB)∗+) ∩ C. ψ is clearly positive and 1 ◦ ψ = λ1 for some λ ≥ 0.
Assume λ 6= 0 then 1

λψ ∈ C(KA → KB) as it is positive and trace-preserving.

One can again apply the same framework of GPTs to set of channels when we consider it as a
base of cone, i.e. as some state space. In quantum theory this is referred to as the framework of
PPOVMs [42] or quantum testers [43].

For channels mapping classical state spaces to classical state spaces we can obtain a more
specific result.

Proposition 30. Let Sn1
and Sn2

be classical state spaces and let ν ∈ C(Sn1
→ Sn2

) then there
are numbers (ν)ij ∈ R+, i ∈ {1, . . . , n1), j ∈ {1, . . . , n2} such that

ν =

n1∑

i=1

n2∑

j=1

(ν)ijbi ⊗ sj .

Moreover it must hold that
n2∑

j=1

(ν)ij = 1.

for all i ∈ {1, . . . , n1).
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Proof. We already know that {b1, . . . , bn1
} is a base of A(Sn1

) and {s1, . . . , sn2
} is a base of

A(Sn2
)∗ and since ν ∈ A(Sn1

)⊗A(Sn2
)∗ we must have

ν =

n1∑

i=1

n2∑

j=1

(ν)ijbi ⊗ sj .

for some νij ∈ R, i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2}. From
〈ν(si), bj〉 = (ν)ij

it follows that we must have (ν)ij ∈ R+ and
∑n2

j=1(ν)ij = 1.

Example 5. Consider C(S2 → S2). According to Prop. 30 every element of C(S2 → S2) is
uniquely determined by the numbers ν11, ν12, ν21, ν22 such that ν12 = 1 − ν11, ν22 = 1 − ν21

and ν11, ν21 ∈ [0, 1]. It follows that we can identify every point of C(S2 → S2) with a state of
the square state space S by the map (ν11, ν12, ν21, ν22) 7→ (ν11, ν21), moreover one can show that
this map is an isomorphism. It follows that we have C(S2 → S2) = S up to the aforementioned
isomorphism.

The last elementary construction for channels that we are going to introduce is the construction
of adjoint channel, historically also called the Heisenberg picture. Let Φ ∈ C(KA → KB), let
x ∈ KA and f ∈ E(KB), and consider a function h : KA → R given as

h(x) = 〈Φ(x), f〉.
It is straightforward to see that h ∈ E(KA).

Definition 30. Let Φ ∈ C(KA → KB), then we define the linear map Φ∗ : A(KB) → A(KA) as
the unique map such that for all x ∈ KA and f ∈ E(KB) we have

〈Φ(x), f〉 = 〈x,Φ∗(f)〉
and we call Φ∗ the adjoint of Φ.

One can again see that the same construction can be used for any linear map L : A(KA)∗ →
A(KB)∗. It is possible to see that both Φ and Φ∗ correspond to the same vector in A(KA) ⊗
A(KB)∗. Let Φ =

∑n
i=1 gi ⊗ ψi, then for f ∈ E(KB) we have

Φ∗(f) =

n∑

i=1

〈ψi, f〉gi.

Since we require a channel to be positive and trace-preserving by definition, we will look at
what properties follow for the adjoint map.

Proposition 31. Let L : A(KA)∗ → A(KB)∗ be a linear map, then L is an adjoint of a channel
Φ ∈ C(KA → KB), i.e. L = Φ∗ if and only if L is positive and unital, i.e. L(1) = 1.

Proof. If L = Φ∗ then clearly L(f) ≥ 0 for all f ∈ A(KB)+, i.e. L is positive. Moreover for any
x ∈ KA we have

〈x,Φ∗(1)〉 = 〈Φ(x), 1〉 = 1

so Φ∗(1) = 1, i.e. L = Φ∗ is unital.
Now assume that L is unital and positive and let L∗ be the adjoint of L, that is the unique

linear map such that for all x ∈ KA and f ∈ E(KB) we have

〈x, L(f)〉 = 〈L∗(x), f〉.
It follows that L∗ is positive as 〈L∗(x), f〉 ≥ 0 for all f ∈ E(KB). Moreover

〈L∗(x), 1〉 = 〈x, L(1)〉 = 〈x, 1〉 = 1

so L∗ is also trace-preserving; it follows that L∗ ∈ C(KA → KB). Finally it is rather easy to see
that (L∗)∗ = L as for all x ∈ KA and f ∈ E(KB) we have

〈x, L(f)〉 = 〈L∗(x), f〉 = 〈x, (L∗)∗(f)〉.
It follows that L is an adjoint of the channel L∗.
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4.2 Complete positivity
We are going to revisit the requirement of positivity of channels; we are going to argue that in
general circumstances requiring only positivity is not enough. Let KA, KB and KC be state
spaces such that KC⊗̃KA is defined and let Φ ∈ C(KA → KB). Assuming that we can separate
(in space or in time or in any other sense) the systems KA and KC , we can clearly apply the
channel Φ to the KA part of KC⊗̃KA. In other words we assume that given Φ ∈ C(KA → KB)
and the tensor product KC⊗̃KA we can always construct the map idC ⊗Φ : A(KC)∗⊗A(KA)∗ →
A(KC)∗ ⊗A(KB)∗, where idC is the identity map, i.e. for ϕ ∈ A(KC)∗ and ψ ∈ A(KA)∗ we have

(idC ⊗Φ)(ϕ⊗ ψ) = ϕ⊗ Φ(ψ).

We are going to proceed with the argument that idC ⊗Φ must be a well defined channel. It follows
that we must also assume thatKC⊗̃KB is defined. To see that the map idC ⊗Φ is trace-preserving,
let x ∈ KC⊗̃KA, then we have

〈(idC ⊗Φ)(x), 1⊗ 1〉 = 〈x, 1⊗ Φ∗(1)〉 = 1

where we have used that the adjoint of idC ⊗Φ is (idC ⊗Φ)∗ = idC ⊗Φ∗ and the unitality of Φ∗.
The troublesome part is that idC ⊗Φ does not have to be positive even when Φ is positive!

This problem is well known even in quantum theory and also can be used to our advantage to
detect entanglement [6, Section 6.3.3]. In conclusion we have to add an additional requirement to
Φ that also idC ⊗Φ is positive whenever KC⊗̃KA is defined. We call this requirement complete
positivity.

Definition 31. We say that a channel Φ ∈ C(KA → KB) is completely positive with respect to
the tensor product KC⊗̃KA if idC ⊗Φ is positive.

Note that the notion of complete positivity does not depend on the state space, only on the
cone A(KC)∗+⊗̃A(KA)∗+. It follows that in the same way we can define the complete positivity
of the adjoint channel mapping the effect algebras. A nice example of completely positive channel
is the identity channel.

In most cases we will always assume that channels are completely positive when needed. Also
in most of applications to quantum theory one always assumes complete positivity of all channels.

We will present two elementary results concerning the complete positivity.

Proposition 32. A channel Φ ∈ C(KA → KB) is completely positive with respect to KC⊗̃KA

if and only if the adjoint channel Φ∗ is completely positive with respect to E(KC)⊗̃E(KB) =
E(KC⊗̃KB).

Proof. Let x ∈ KC⊗̃KA and f ∈ E(KC)⊗̃E(KB). Assume that Φ ∈ C(KA → KB) is completely
positive with respect to KC⊗̃KA, then

0 ≤ 〈(idC ⊗Φ)(x), f〉 = 〈x, (idC ⊗Φ∗)(f)〉
which shows that we must have (idC ⊗Φ∗)(f) ≥ 0.

Assume that Φ∗ is completely positive with respect to E(KA)⊗̃E(KB), then the complete
positivity of Φ with respect to KC⊗̃KA follows in a similar manner.

In case when the real tensor product coincides with either minimal or maximal tensor product
we can show that the notions of positivity and complete positivity coincide.

Proposition 33. Let KA and KC be state spaces and let Φ ∈ C(KA → KB). Φ is completely
positive with respect to KC⊗̇KA and KC⊗̂KA.

Proof. First consider the case of KC⊗̇KA and let x ∈ KA, y ∈ KC . As we have Φ(x) ∈ KB it
follows that

(idC ⊗Φ)(y ⊗ x) = y ⊗ Φ(x) ∈ KC⊗̇KB .

Complete positivity of Φ with respect to KC⊗̇KA follows as all of the extreme points of KC⊗̇KA

are of the form y ⊗ x.
Now consider the case of KC⊗̂KA. We have E(KC⊗̂KA) = E(KA)⊗̇E(KC) by definition. It

is rather straighforward to check that Φ∗ is always completely positive with respect to the minimal
tensor product E(KA)⊗̇E(KC) in the same way as in the first part of the proof. The complete
positivity of Φ with respect to KC⊗̂KA follows from Prop. 32.
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4.3 Entanglement-breaking channels
We are going to consider a special class of channels such that whenever we apply them to a part
of entangled state, we get a separable state.

Definition 32. Let Φ ∈ C(KA → KB) be a channel, then we say that Φ is entanglement breaking
with respect to KC⊗̃KA if for every x ∈ KC⊗̃KA we have

(idC ⊗Φ)(x) ∈ KC⊗̇KB .

Note that as a result of the definition all entanglement-breaking channels are completely pos-
itive with respect to the same tensor product. To see that not all completely positive channels
are entanglement-breaking, let KA, KB be state spaces such that KA⊗̃KB 6= KA⊗̇KB , then one
can see that the identity channel idA ∈ C(KA → KA) is completely positive but not entanglement
breaking.

4.4 Measurements
In the beginning we were discussing measurements when introducing our postulates, now we will
finally provide a proper definition. We have postponed providing the definition sooner as we
believe than now it will be mathematically more straightforward and nicer.

The classical state space can be interpreted as the set of probability measures over a finite
set of points (with respect to the sigma algebra of all subsets of given set). From the operational
standpoint we require that the outcome of a measurement is a probability measure over the possible
set of outcomes, hence a measurement is going to be an affine map that assigns a probability
measure to a state. We are going to restrict to only finitely many outcomes.

Definition 33. n-outcome measurement m on the state space K is a channel m : K → Sn.

The beauty in defining the measurements as special cases of channels is that we can already
use all of the results we have derived for channel in Subsec. 4.1. Moreover the special structure
of measurements allows us to obtain more specific results.

Letm : K → Sn be a measurement, then we already know that we havem ∈ A(K)+⊗̂A(Sn)∗+.
According to Coro. 7 we must have A(K)+⊗̂A(Sn)∗+ = A(K)+⊗̇A(Sn)∗+ and it follows that if
we denote ext(Sn) = {s1, . . . , sn} then there are unique functions fi ∈ A(K)+, i ∈ {1, . . . , n} such
that

m =

n∑

i=1

fi ⊗ si.

m is trace-preserving if and only if we have
∑n
i=1 fi = 1 which shows that we must have fi ∈ E(K)

for all i ∈ {1, . . . , n}. Here we would like to return to the question of interpreting effects as
now we can provide a full answer. The effects are the building blocks of measurements and
every measurement is isomorphic to a tuple of effects (g1, . . . , gn) such that

∑n
i=1 gi ≤ 1, the

corresponding measurement is given as m =
∑n
i=1 gi ⊗ si + (1−∑n

i=1 gi)⊗ sn+1. We could have
also started by defining measurements as tuples of effects.

Proposition 34. Let KA, KB be state spaces and let m : KA → Sn be a measurement and assume
that KB⊗̃KA is defined, then m is entanglement-breaking with respect to KB⊗̃KA.

Proof. Let x ∈ KB⊗̃KA and let m =
∑n
i=1 fi ⊗ si for some fi ∈ E(KA), i ∈ {1, . . . , n}. As a

result of Prop. 17 we know that (idB ⊗fi)(x) ∈ A(KB)∗+. We have

(idB ⊗m)(x) =

n∑

i=1

(idB ⊗fi)(x)⊗ si ∈ A(KB)∗+⊗̇A(Sn)∗+.

(idB ⊗m)(x) ∈ KB⊗̇Sn follows from the trace-preserving of m.

Corollary 8. Every measurement is completely positive with respect to all tensor products.

Proof. The result follows from Prop. 34.
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A special type of measurement is a two-outcome (also called dichotomic) measurement, that
is a measurement m : K → S2. One can easily see that the set of two-outcome measurements
is isomorphic to the effect algebra E(K) using the aforementioned isomorphism between tuples
of effects and measurements. Two-outcome measurements are important as they are the simplest
non-trivial measurements that any theory provides.

4.5 Measure-and-prepare channels
Measure and prepare channels are conceptually similar to measurements; the operational idea is
that we want to first measure and then prepare a state according to the measurement outcome we
have obtained.

Definition 34. Let Φ ∈ C(KA → KB), then Φ is a measure-and-prepare channel if there are
fi ∈ E(KA) and xi ∈ KB for i ∈ {1, . . . , n} such that

∑n
i=1 fi = 1 and such that we have

Φ =

n∑

i=1

fi ⊗ xi.

Note that measurements are a special type of measure-and-prepare channels. The following
result is immediate.

Proposition 35. Let Φ ∈ C(KA → KB) be measure-and-prepare, then Φ is entanglement-breaking
with respect to any tensor product KC⊗̃KA.

Proof. The proof mimicks the steps of the proof of Prop. 34. Let Φ =
∑n
i=1 fi ⊗ xi for some

fi ∈ E(KA) and xi ∈ KB , i ∈ {1, . . . , n} such that
∑n
i=1 fi = 1 and let y ∈ KC⊗̃KA. We have

(idC ⊗Φ)(y) =

n∑

i=1

(idC ⊗fi)(y)⊗ xi ∈ A(KC)∗+⊗̇A(KB)∗+.

Corollary 9. Let Φ ∈ C(KA → KB) be measure-and-prepare, then Φ is completely positive with
respect to any tensor product KC⊗̃KA.

Proof. The result again follows from Prop. 34.

It is known that in quantum theory all entanglement-breaking channels with respect to the
real tensor product used in quantum theory are measure-and-prepare channels [44–46]. One can
also obtain such result in a more general settings of weakly self-dual theories [47]. We will show
that the same holds in any other theory if we consider a channel to be entanglement-breaking with
respect to maximal tensor product with all possible compact convex sets.

Proposition 36. Assume that a channel Φ ∈ C(KA → KB) is entanglement-breaking with respect
to all compact convex sets KC ⊂ V , where V is a finite dimensional real vector space, and with
respect to the maximal tensor products KC⊗̂KA, then Φ is measure-and-prepare.

Proof. Let xi ∈ KA for i ∈ {1, . . . , n} be a set of states such that it is a basis of A(KA)∗ and let
fi ∈ A(KA) for i ∈ {1, . . . , n} be the dual basis, i.e. we have 〈xi, bj〉 = δij for all i, j ∈ {1, . . . , n}.
Note that the functions bi do not have to be positive and one can show that they are all positive
if and only if KA is a simplex. Now consider

ψ =

n∑

i=1

fi ⊗ xi,

we are going to show that ψ ∈ A(KA)+⊗̂A(KA)∗+. Let y ∈ KA be a state such that y =
∑n
i=1 αixi

for some αi ∈ R, i ∈ {1, . . . , n} and let g ∈ A(KA)+ be such that g =
∑n
i=1 βifi for some βi ∈ R,

i ∈ {1, . . . , n}, we have

〈ψ, y ⊗ g〉 =

n∑

i=1

〈fi, y〉〈xi, g〉 =

n∑

i=1

αiβi = 〈y, g〉 ≥ 0.
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Also we argue that for some suitable choice of base of the cone A(KA)+ the vector ψ is a state,
e.g. let u = 1

n

∑n
i=1 xi then 〈ψ, u⊗ 1〉 = 1. We have Φ =

∑n
i=1 hi ⊗ ϕi for some hi ∈ A(KA) and

ϕi ∈ A(KB)∗, i ∈ {1, . . . , n} and

(id⊗Φ)(ψ) =

n∑

j=1

(
n∑

i=1

〈hj , xi〉fi
)
⊗ ϕj =

n∑

j=1

hj ⊗ ϕj .

It follows that if we require (id⊗Φ)(ψ) ∈ A(KA)+⊗̇A(KB)∗+ then also Φ ∈ A(KA)+⊗̇A(KB)∗+,
i.e. Φ is measure-and-prepare.

4.6 Instruments and operations
When we were defining measurements, we were only concerned with what measurement outcome
we obtain, but this is not entirely realistic model. In reality when we do a measurement we
not only obtain a measurement outcome, but also some post-measurement state of the system.
Therefore let K be a state space, then we should describe an n-outcome measurement by a channel
Φ : K → Sn⊗̇K, where Sn⊗̇K is the joint system of the measurement outcomes and the post-
measurement state. We have assumed that the pre-measurement and post-measurement states
belong to the same state space.

Definition 35. An instrument is a channel Φ : K → Sn⊗̇K.

It is straightforward that we can reconstruct the measurement from a given instrument simply
by taking the partial trace over the post-measurement system K.

Definition 36. Let m ∈ C(K → Sn) be a measurement and let Φ ∈ C(K → Sn⊗̇K) be an
instrument, then we say that Φ is an instrument for the measurement m if

m = (idSn ⊗1) ◦ Φ

where idSn
is the identity map on Sn, i.e. if m is the measurement that we obtain from Φ by

taking the partial trace over the post-measurement system K.

We say that a map Φ is trace-non-increasing whenever we have 1 ◦ Φ ≤ 1. The following
structural characterization is useful.

Proposition 37. Let Φ : K → K⊗̇Sn be an instrument, then there are positive, trace-non-
increasing maps Φi : K → A(K)∗+, i ∈ {1, . . . , n} such that

Φ =

n∑

i=1

Φi ⊗ si,

i.e. for x ∈ K we have Φ(x) =
∑n
i=1 Φi(x)⊗ si.

Proof. Since s1, . . . , sn is a basis of A(Sn)∗ and since Φ ∈ A(K)⊗A(K)∗ ⊗A(Sn)∗ the we have

Φ =

n∑

i=1

Φi ⊗ si

where Φi ∈ A(K)⊗A(K)∗, i.e. Φi : A(K)∗ → A(K)∗ are linear maps for all i ∈ {1, . . . , n}, it only
remains to show that they are positive and trace-non-increasing. Let bi ∈ E(Sn) for i ∈ {1, . . . , n}
be the functions such that 〈si, bj〉 = δij for all i, j ∈ {1, . . . , n} and let x ∈ K, f ∈ E(K), then we
have

0 ≤ 〈Φ(x), f ⊗ bi〉 = 〈Φi(x), f〉
so the maps Φi are positive for all i ∈ {1, . . . , n}. Since bi ∈ E(Sn) and 1 =

∑n
i=1 bi, we get that

n∑

i=1

1 ◦ Φi = 1

and 1 ◦ Φi ≤ 1 follows.

39



Clearly the set of positive, trace-non-increasing maps is of interest in a given theory.

Definition 37. Positive, trace-non-increasing map Φ : K → A(K)∗+ is called an operation.

Note that for simplicity we again require only positivity, but with regards to the same argu-
ments as for channel, one should also require all instruments to be completely positive, as it is
usually done in quantum theory.

We will shortly investigate the structure of instruments that give the same measurement.

Proposition 38. Let Φm ∈ C(K → Sn⊗̇K) be an instrument for a measurement m ∈ C(K → Sn)
and let Φ ∈ C(K → K), idSn

∈ C(Sn → Sn) be the identity channel, then also (idSn
⊗Φ) ◦ Φm is

an instrument for the measurement m.

Proof. We have
(idSn

⊗1) ◦ (idSn
⊗Φ) ◦ Φm = (idSn

⊗1) ◦ Φm = m.

One can ask whether there exist an instrument Φm such that every other instrument for the
measurement (idSn

⊗1) ◦Φm is of the form (idSn
⊗Φ) ◦Φm for some Φ ∈ C(K → K). This is true

in some theories, specifically in quantum theory this is true for the Lüders instrument [6, Section
5.3].
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5 Compatibility and similar notions
We have already explored entanglement as an aspect of non-classical theories; in this section we
are going to look at incompatibility. Incompatibility is mostly associated with measurements
and especially in quantum theory it is sometimes seen as generalization of non-commutativity of
projection measures. Our approach is going to be more general. We will introduce compatibillity
as property of channels, but in the special case of measurements in quantum theory, one can
reconstruct the well known results [6].

Compatibility of measurements has been heavily investigated in quantum theory [48–53] but
also in the framework of GPTs [47, 54, 55] and compatibility of channels in quantum theory has
been considered before [56]. The approach that we are going to present is going to consider
channels and we are only going to assume special properties of the channels only when needed.

5.1 Compatibility of channels
LetKA, KB andKC be state spaces and let Φ1 ∈ C(KA → KB) and Φ2 ∈ C(KA → KC). Consider
the following task: we are given an unknown x ∈ KA and we want to obtain the states Φ1(x) and
Φ2(x), both at the same time and by using only single copy of the given x ∈ KA. It would be
tempting to say that we can just prepare the states Φ1(x) and Φ2(x) but that would assume that we
would know x beforehand. One possible strategy is to look for a channel Φ ∈ C(KA → KB⊗̃KC)
such that

((idB ⊗1) ◦ Φ)(x) = Φ1(x) (2)
((1⊗ idC) ◦ Φ)(x) = Φ2(x) (3)

for all x ∈ KA. If such channel Φ exists then we argue that we can implement Φ1 and Φ2 at the
same time as we can obtain them as partial traces of Φ. Of course this can be generalized to more
than two channels.

Definition 38. Let KA, KBi where i ∈ {1, . . . , n} and let Φi ∈ C(KA → KBi). We say that the
channels Φ1, . . . ,Φn are compatible if there is a channel Φ ∈ C(KA → ⊗̃ni=1KBi

) such that
((

idB1 ⊗1⊗(n−1)
)
◦ Φ
)

(x) = Φ1(x)

...
((

1⊗(i−1) ⊗ idBi
⊗1⊗(n−i)

)
◦ Φ
)

(x) = Φi(x)

...
((

1⊗(n−1) ⊗ idBn

)
◦ Φ
)

(x) = Φn(x)

where 1⊗2 = 1⊗ 1, 1⊗3 = 1⊗ 1⊗ 1 and so on. Moreover we call Φ the joint channel of channels
Φ1, . . . ,Φn and we call Φ1, . . . ,Φn the marginals of Φ.

Most of the time we are going to be interested in compatibility of two channels, but many of
our results could be generalized to the case of n channels. Note that the joint channel does not
have to be unique.

There is one special case of the described scenario of compatibility of two channels when we
have Φ1 = Φ2, i.e. when we consider the compatibility of the channel with itself, also called the
self-compatibility of the channel.

Definition 39. Let Φ ∈ C(KA → KB) then we say that Φ is self-compatible if Φ is compatible
with itself. We say that a channel is k-self-compatible if k ∈ N copies of the channel are compatible.

Note that one can find examples of channels that are e.g. 3-self-compatible but not 4-self-
compatible. Self-compatibility of channels was investigated in quantum theory [46, 56–58] where
one can find examples of channels that are not self-compatible. We are going to present such
examples as well in Subsec. 5.2. Now we will investigate the general notion of compatibility of
channels further. At first, we will consider the special case of measurements.
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Proposition 39. Let m1 ∈ C(K → Sn1
) and m2 ∈ C(K → Sn2

) be measurements given as

m1 =

n1∑

i=1

fi ⊗ si

m2 =

n1∑

j=1

gi ⊗ sj

for some fi, gj ∈ E(K), i ∈ {1, . . . , n1}, j ∈ {1, . . . , n2}. The measurements m1 and m2 are
compatible if and only if there are effects hij ∈ E(K) such that

fi =

n2∑

j=1

hij (4)

gj =

n1∑

i=1

hij (5)

for all i ∈ {1, . . . , n1} and j ∈ {1, . . . , n2}.

Proof. The proof is rather straightforward. Assume that m1 and m2 are compatible then there is
m ∈ C(K → Sn1

⊗̇Sn2
) such that

m =

n1∑

i=1

n2∑

j=1

hij ⊗ si ⊗ sj (6)

and

m1 = (idSn1
⊗1) ◦m =

n1∑

i=1

n2∑

j=1

hij ⊗ si

m2 = (1⊗ idSn2
) ◦m =

n1∑

i=1

n2∑

j=1

hij ⊗ sj

from where the result follows.
If we assume that there are hij ∈ E(K) such that Eq. (4) and (5) are satisfied then let m be

given by Eq. (6). It is straightforward to verify that m is a measurement and that it is a joint
measurement of m1 and m2.

A very useful tool when dealing with compatibility of channels is the notion of concatenation
of channels and its relation to compatibility. In quantum theory, this was already investigated in
[56].

Proposition 40. Let Φ1 ∈ C(KA → KB1
), Φ2 ∈ C(KA → KB2

) and Φ3 ∈ C(KB2
→ KB3

) be
channels, then Φ3 ◦ Φ2 ∈ C(KA → KB3

). If Φ1 and Φ2 are compatible, then also Φ1 and Φ3 ◦ Φ2

are compatible.

Proof. The fact that Φ3 ◦ Φ2 ∈ C(KA → KB3) is straightforward, it is a channel such that for
x ∈ KA we have (Φ3 ◦ Φ2)(x) = Φ3(Φ2(x)). Now assume that Φ1 and Φ2 are compatible with a
joint channel Φ ∈ C(KA → KB1

⊗̃KB2
), i.e. we have (idB1

⊗1) ◦ Φ = Φ1 and (1⊗ idB2
) ◦ Φ = Φ2

and consider the channel (idB1
⊗Φ3) ◦ Φ ∈ C(KA → KB1

⊗̃KB3
). We have

(idB1
⊗1) ◦ (idB1

⊗Φ3) ◦ Φ = (idB1
⊗Φ∗3(1)) ◦ Φ = (idB1

⊗1) ◦ Φ = Φ1

(1⊗ idB2
) ◦ (idB1

⊗Φ3) ◦ Φ = Φ3 ◦ (1⊗ idB2
) ◦ Φ = Φ3 ◦ Φ2

which shows that Φ1 and Φ3 ◦ Φ2 are compatible.
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Corollary 10. Let Φ1 ∈ C(KA → KB1
) and Φ2 ∈ C(KA → KB2

) be measure-and-prepare channels
given as

Φ1 =

n1∑

i=1

fi ⊗ xi

Φ2 =

n2∑

j=1

gj ⊗ yj

for some fi, gj ∈ E(KA), xi ∈ KB1
and yj ∈ KB2

for i ∈ {1, . . . , n1} and j ∈ {1, . . . , n2}. Let
m1 ∈ C(KA → Sn1) and m2 ∈ C(KA → Sn2) be the corresponding measurements given as

m1 =

n1∑

i=1

fi ⊗ si

m2 =

n2∑

i=1

gj ⊗ sj .

If m1 and m2 are compatible then also Φ1 and Φ2 are compatible and their joint channel can be
chosen to be measure-and-prepare.

Proof. Consider the channels ν1 ∈ C(Sn1 → KB1) and ν2 ∈ C(Sn2 → KB2) given as

ν1(si) = xi

ν2(sj) = yj

then Φ1 = ν1 ◦m1 and Φ2 = ν2 ◦m2, i.e. ν1 and ν2 are the preparation parts of the measure-and-
prepare channels Φ1 and Φ2. The compatibility of Φ1 and Φ2 follows from the compatibility of
m1 and m2 and using twice the result of Prop. 40.

To show that the joint channel can be selected to be measure-and-prepare let m ∈ C(K →
Sn1
⊗̇Sn2

) be the joint measurement of m1 and m2 and the construct Φ = (ν1 ⊗ ν2) ◦ m. It is
straightforward to check that Φ is measure and prepare and that it is a joint channel of Φ1 and
Φ2.

Corollary 11. Let Φ ∈ C(KA → KB) be a measure-and-prepare channel, then Φ is self-compatible,
i.e. it is compatible with itself.

Proof. The result follows from Coro. 10.

It is straightforward to see that one can extend the results of Coro. 10 and Coro. 11 to
more than 2 channels. The following result is inspired by [55] where similar result was proved for
measurements but using a different approach.

Corollary 12. Let Φ1 ∈ C(KA → KB1
) and Φ2 ∈ C(KA → KB2

) be channels, then they are
compatible if there is a self-compatible channel Φ3 ∈ C(KA → KB3

) and channels ν1 ∈ C(KB3
→

KB1
) and ν2 ∈ C(KB3

→ KB2
) such that

Φ1 = ν1 ◦ Φ3, (7)
Φ2 = ν2 ◦ Φ3. (8)

Proof. It follows from Eq. (7) and (8), the self-compatibility of Φ3 and Prop. 40 that the channels
Φ1 and Φ2 are compatible.

In case of measurements one can prove a stronger result.

Corollary 13. Let m1 ∈ C(K → Sn1
) and m2 ∈ C(K → Sn2

) be measurements, then they are
compatible if and only if there is a measurement m3 ∈ C(K → Sn3

) and channels ν1 ∈ C(Sn3
→

Sn1
) and ν2 ∈ C(Sn3

→ Sn2
) such that

m1 = ν1 ◦m3 (9)
m2 = ν2 ◦m3. (10)
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Proof. Another version of the proof may be found in [55]. Assume that the measurements m1 and
m2 are compatible and let m ∈ C(K → Sn1

⊗̇Sn2
) be their joint measurement. Take m3 = m,

ν1 = id⊗1 and ν2 = 1⊗ id, then the Eq. (9) and (10) become (2) and (3).
The converse statement follows from Coro. 12 and Coro. 11.

5.2 Existence of incompatible channels
In this subsection we will argue that incompatibility exists in all non-classical theories and we will
show how this implies a result about existence of entanglement as presented in Subsec. 3.3. First,
we will show that if a state space is a simplex then all channels are compatible. Afterwards we will
investigate the consequences of existence of incompatible measurements on a non-classical state
space K.

Proposition 41. Let Sn be a simplex, then k copies of the identity channel are compatible for
any k ∈ N, i.e. the id channel is self-k-compatible.

Proof. Let ext(Sn) = {s1, . . . , sn} and let bi ∈ E(Sn), for i ∈ {1, . . . , n} be the dual basis, i.e. we
have 〈si, bj〉 = δij for all i, j ∈ {1, . . . , n}. Note that the fact that all of the functions b1, . . . , bn
are positive is an exclusive property of the classical state spaces.

We have that

idSn =

n∑

i=1

bi ⊗ si ∈ A(Sn)+⊗̇A(Sn)∗+

and it follows that

Φ(k) =

n∑

i=1

bi ⊗ (s⊗ki ) ∈ C(Sn → S⊗kn )

is a well defined channel. One can see that Φ(k) is the joint channel of k copies of the identity
channel idSn

.

Corollary 14. Let Sn be a simplex and k ∈ N, then any set of k channels Φi ∈ C(Sn → KBi
) for

any state spaces KBi
and i ∈ {1, . . . , k} is compatible.

Proof. The result follows from the same idea as Prop. 40 and from the fact that we have Φi =
Φi ◦ idSn . Let Φ(k) be the joint of k copies of idSn ∈ C(Sn → Sn) as constructed in the proof of
Prop. 41 and let

Φ =
(
⊗ki=1Φi

)
◦ Φ(k)

then it is straightforward to check that Φ is the joint channel of the channels Φ1, . . . ,Φk.

Proposition 42. Let K be a state space then there exists a pair of incompatible two-outcome
measurements m1,m2 ∈ C(K → S2) whenever K is not a simplex.

Proof. Constructive proof may be found in [59].

We are going to explore some of the consequences of existence of incompatible channels. The
following result is known as no-broadcasting and it was originally proved in [35, 60].

Corollary 15 (No-broadcasting). Let K be a non-classical state space, i.e. K is not a simplex,
then the identity channel id is not self-compatible.

Proof. Assume that the identity channel id is self-compatible. Since for any channels Φ1 ∈ C(K →
KB1

) and Φ2 ∈ C(K → KB2
) we have Φ1 = Φ1 ◦ id and Φ2 = Φ2 ◦ id it would follow from Coro.

12 that Φ1 and Φ2 would be compatible. This is in contradiction with the result of Prop.42.

The following result will be about the existence of entanglement and it was also proved in [36]
using a very different methods. In [36] the authors prove the statement of Prop. 20 which they
use to conclude the following result. We will use the result of Coro. 15 to prove the following
result.
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Corollary 16. Let KA be a non-classical state space, then there exists a compact convex set
KB ⊂ V , where V is a finite dimensional real vector space, such that KA⊗̇KB 6= KA⊗̂KB.

Proof. LetKA be a non-classical state space and consider the identity channel id. We already know
that id ∈ A(KA)+⊗̂A(KA)∗+; we must have id /∈ A(KA)+⊗̇A(KA)∗+ as if id would be measure-
and-prepare, then according to Coro. 11 it would be self-compatible which would be in contradic-
tion with Coro. 15. It follows that we must have A(KA)+⊗̇A(KA)∗+ 6= A(KA)+⊗̂A(KA)∗+.

To conclude the proof let KB be a base of A(KA)+ then according to Prop. 6 we know that
KB is a compact convex set and we have KA⊗̇KB 6= KA⊗̂KB .

5.3 Degree of compatibility
Assume that we have two systems described by state spaces KA and KB and we want to to use a
channel Φ ∈ C(KA → KB) to communicate a message. That is we want to prepare a state x ∈ KA,
map it to Φ(x) ∈ KB and then try to get as much information about the original state x ∈ KA

from Φ(x) ∈ KB as possible. Clearly our probability of being successful is going to depend on the
channel Φ. For example if KA = KB and Φ = id then the task is trivial as we are given the state
itself. But now consider a different scenario, let y ∈ KB and let Φ(x) = y for all x ∈ KA. Clearly
there is nothing we can learn about x from Φ(x) = y and in this case we can see the channel
Φ = 1⊗ y as classical noise. We will introduce a name for the channels that represent noise.

Definition 40. Let Φ ∈ C(KA → KB) be such that for all x, y ∈ KA we have Φ(x) = Φ(y), then
we call Φ a constant channel.

If a constant channel m ∈ C(K → Sn) is a measurement we may also refer to it as coin-toss
measurement. The following is a trivial result

Lemma 1. Let Φ1 ∈ C(KA → KB1
) and let Φ2 ∈ C(KA → KB2

). If Φ2 is a constant channel
then Φ1 and Φ2 are compatible.

Proof. Let y ∈ KB2
be the state such that for all x ∈ KA we have Φ2(x) = y. Let Φ ∈ C(KA →

KB1⊗̃KB2) be a channel defined for x ∈ KA as

Φ(x) = Φ1(x)⊗ y.

It follows that Φ is a joint channel of Φ1 and Φ2.

Inspired by the simple result, consider the following question: let Φ1,ΦC1
∈ C(KA → KB1

)
and Φ2,ΦC2

∈ C(KA → KB2
) such that ΦC1

and ΦC2
are constant channels, then for what value

of λ ∈ [0, 1] are the channels λΦ1 +(1−λ)ΦC1 and λΦ2 +(1−λ)ΦC2 compatible? Different aspects
of the question were already investigated in [15, 54, 55, 61–64], we are only going to present the
most basic definition and results.

Definition 41. Let Φ1,ΦC1
∈ C(KA → KB1

) and Φ2,ΦC2
∈ C(KA → KB2

) such that ΦC1

and ΦC2
are constant channels. The degree of compatibility of channels Φ1 and Φ2 is denoted

DegCom(Φ1,Φ2) and it is defined as

DegCom(Φ1,Φ2) = sup
λ∈[0,1],

ΦC1
,ΦC2

{λ : λΦ1 + (1− λ)ΦC1
, λΦ2 + (1− λ)ΦC2

are comaptible}

Proposition 43. Let Φ1 ∈ C(KA → KB1) and Φ2 ∈ C(KA → KB2) then

DegCom(Φ1,Φ2) ≥ 1

2
.

Proof. The idea of the proof is well known and it can be also found in [54]. Let ΦC1 ∈ C(KA →
KB1) and ΦC2 ∈ C(KA → KB2) be any constant channels such that for x ∈ KA we have ΦC1(x) =
y1 and ΦC2

(x) = y2. We will define a channel Φ ∈ C(KA → KB1
⊗̃KB2

) for x ∈ KA as

Φ =
1

2
(Φ1(x)⊗ y2 + y1 ⊗ Φ2(x)).
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We have

(idB1
⊗1) ◦ Φ =

1

2
(Φ1 + ΦC1

)

(1⊗ idB2
) ◦ Φ =

1

2
(Φ2 + ΦC2

)

hence 1
2 (Φ1 + ΦC1) and 1

2 (Φ2 + ΦC2) are compatible. DegCom(Φ1,Φ2) ≥ 1
2 follows.

In some applications it may be of interest to look for channels Φ1 ∈ C(KA → KB1
) and

Φ2 ∈ C(KA → KB2
) such that DegCom(Φ1,Φ2) =

1

2
, for example one can show that the violation

of Bell inequalities is bounded by the degree of compatibility [64]. Hence we introduce the following
notion.

Definition 42. The channels Φ1 ∈ C(KA → KB1) and Φ2 ∈ C(KA → KB2) are called maximally

incompatible if DegCom(Φ1,Φ2) =
1

2
.
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6 Correlations
We have already seen connections between incompatibility and entanglement in Coro. 16 where
we have used existence of incompatible measurements to prove that entanglement exists. Now
we are going to look at results that use both incompatibility and entanglement at the same time.
We will go only as far as to formulate the basic definitions of steering and Bell non-locality for
measurements only, as this is the standard formulation stemming from the EPR argument [65] and
further works on the topic [66, 67] and formalized in [68]. The extensions of all of the definitions
and results from measurements to channels as well as other results may be found in [69].

6.1 Steering
Steering as a phenomenon was first described in [66] and since then it has been heavily investigated
in quantum theory [70–75] and in GPTs [30, 47, 76]. Also results on one-side device-independent
protocols rely on steering [77].

Let KA, KB be a state spaces such that KA⊗̃KB is defined and let mi ∈ C(KA → Sni
) for

i ∈ {1, . . . , N} be measurements given as

mi =

ni∑

j=1

f
(i)
j ⊗ sj

and let x ∈ KA⊗̃KB . We are going to denote

y(j|i) = (f
(i)
j ⊗ id)(x). (11)

Using the arguments of local realism [65] one may argue that there must exist the so-called local
hidden state model for y(j|i), i.e. that we should have

y(j|i) =

Ω∑

λ=1

pλp(j|i, λ)zλ (12)

for some Ω ∈ N, for all i ∈ {1, . . . , N} and for all j ∈ {1, . . . , ni}, where pλ ∈ R+,
∑Ω
λ=1 pλ = 1

and p(j|i, λ) ∈ R+ such that
∑ni

j=1 p(j|i, λ) = 1 and zλ ∈ KB . Of course Eq. (12) does not have
to be satisfied for every choice of x ∈ KA⊗̃KB and measurements m1, . . . ,mk.

Definition 43. We say that a state x ∈ KA⊗̃KB is not steerable by measurements m1, . . . ,mN

if there is a local hidden state model for the ensemble y(j|i) as given by Eq. (11), i.e. if there is
a local hidden state model such that Eq. (12) is satisfied.

The following are standard results concerning steering.

Proposition 44. A state x ∈ KA⊗̃KB is not steerable by measurements m1, . . . ,mN if x ∈
KA⊗̇KB, i.e. if x is separable.

Proof. The proof is rather simple and may be found in [69]. Let x ∈ KA⊗̇KB and assume that
x = w⊗ z for some w ∈ KA and z ∈ KB , it is sufficient to find local hidden state models for such
states as they contain the extreme points of KA⊗̇KB . Let mi ∈ C(KA → Sni

) for i ∈ {1, . . . , N}
be measurements given as

mi =

ni∑

j=1

f
(i)
j ⊗ sj

then we have
(f

(i)
j ⊗ id)(x) = 〈w, f (i)

j 〉z
which is a local hidden variable model with 〈w, f (i)

j 〉 = p(j|i, λ), z = zλ and where the hidden
parameter λ has just one value. We have

ni∑

j=1

〈w, f (i)
j 〉 = 〈w, 1〉 = 1

which concludes the proof.
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Proposition 45. A state x ∈ KA⊗̃KB is not steerable by measurements m1, . . . ,mk if the mea-
surements m1, . . . ,mN are compatible.

Proof. A proof may be found in [69] but it is rather straightforward. Let m ∈ C(K → Sn) such
that there are channels νi ∈ C(Sn → Sni

) such that mi = νi ◦m and let m be given as

m =

n∑

k=1

gk ⊗ sk.

We then have that

f
(i)
j =

n∑

k=1

(νi)kjgk

where (νi)kj are given as in Prop. 30 as

νi ◦m =

n∑

k=1

gk ⊗ νi(sk) =

n∑

k=1

ni∑

j=1

(νi)kjgk ⊗ sj .

We have

y(j|i) = (f
(i)
j ⊗ id)(x) =

n∑

k=1

(νi)kj(gk ⊗ id)(x).

According to Prop. 17 we have (gk ⊗ id)(x) = µkzk for some zk ∈ KB and µk ∈ [0, 1] for all
k ∈ {1, . . . , n}. It follows that

y(j|i) =

n∑

k=1

µk(νi)kjzk

is a local hidden state model with k = λ, µk = pλ and (νi)kj = p(j|i, λ).
∑n
k=1 µk = 1 follows

from
n∑

k=1

µk =

n∑

k=1

〈(gk ⊗ id)(x), 1〉 = 〈x, 1⊗ 1〉 = 1

and
∑ni

j=1(νi)kj = 1 follows from Prop. 30.

6.2 Bell non-locality
Bell non-locality as a phenomenon was established in [67] as a solution to the EPR paradox.
The most well-known form of Bell non-locality today is given by the CHSH inequality [78]. Bell
non-locality was also heavily investigated in quantum theory [51, 64, 79–86] and in GPTs as well
[47, 87, 88], maximal violations of the CSHS inequality were investigated [89–92] and also in the
context of device-independent protocols [93–96].

Bell non-locality is very similar to steering, with the twist that we apply measurements to both
systems. So let again KA and KB be state spaces, let mA

i ∈ C(KA → SnA
i

) and mB
j ∈ C(KB →

SnB
j

) for i ∈ {1, . . . , NA} and j ∈ {1, . . . , NB}, where the measurements are given as

mA
i =

nA
i∑

k=1

f
(i)
k ⊗ sk,

mB
j =

nB
j∑

l=1

g
(j)
l ⊗ sl.

Let x ∈ KA⊗̃KB , we are going to denote

p(k, l|i, j) = 〈x, f (i)
k ⊗ g

(j)
l 〉 (13)
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which corresponds to Eq. (11) in the case of steering. One can again use the arguments of local
realism [65, 67] that we should have the so-called local hidden variable model given as

p(k, l|i, j) =

Ω∑

λ=1

pλp(k|i, λ)p(l|j, λ) (14)

for some Ω ∈ N, for all i ∈ {1, . . . , NA}, for all j ∈ {1, . . . , NB}, for all k ∈ {1, . . . , nAi }, for all l ∈
{1, . . . , nBj }, where pλ ∈ R+,

∑Ω
λ=1 pλ = 1 and p(k|i, λ), p(l|j, λ) ∈ R+ such that

∑nA
i

k=1 p(k|i, λ) =

1 and
∑nB

j

l=1 p(l|j, λ) = 1. Again Eq. (14) does not have to be satisfied for any choice of x ∈ KA⊗̃KB

and measurements mA
1 , . . . ,m

A
NA

and mB
1 , . . . ,m

B
NB

.

Definition 44. The state x ∈ KA⊗̃KB is Bell local with respect to measurements mA
1 , . . . ,m

A
NA

,
and mB

1 , . . . ,m
B
NB

if there is a local hidden variable model for the ensemble p(k, l|i, j) as given by
Eq. (13). i.e. if there is a local hidden variable model such that Eq. (14) is satisfied.

We will again present a standard and basic result on the connection between Bell non-locality
and steering.

Proposition 46. Let x ∈ KA⊗̃KB and let mA
i ∈ C(KA → SnA

i
) and mB

j ∈ C(KB → SnB
j

) for
i ∈ {1, . . . , NA} and j ∈ {1, . . . , NB}, where the measurements are given as

mA
i =

nA
i∑

k=1

f
(i)
k ⊗ sk,

mB
j =

nB
j∑

l=1

g
(j)
l ⊗ sl.

Let y(k|i) be an ensemble given by Eq. (11), i.e.

y(k|i) = (f
(i)
k ⊗ id)(x).

If x is not steerable by the measurements mA
1 , . . . ,m

A
NA

, then x is Bell local with respect to the
measurements mA

1 , . . . ,m
A
NA

and mB
1 , . . . ,m

B
NB

.

Proof. The proof is quite straightforward. Assume that we have

(f
(i)
k ⊗ id)(x) =

Ω∑

λ=1

pλp(k|i, λ)zλ

as in Eq. (12), then

p(k, l|i, j) =

〈
Ω∑

λ=1

pλp(k|i, λ)zλ, g
(j)
l

〉
=

Ω∑

λ=1

pλp(k|i, λ)〈zλ, g(j)
l 〉.

Denote p(l|j, λ) = 〈zλ, g(j)
l 〉, then we have

∑nB
j

l=1 p(l|j, λ) = 1 and we have obtained the local hidden
variable model for p(k, l|i, j).

We are going to use the result of Prop. 46 to get results equivalent to Prop. 44 and Prop. 45.

Corollary 17. Let x ∈ KA⊗̇KB, then there is a local hidden variable model for the ensemble
p(k, l|i, j) given by the state x and measurements mA

1 , . . . ,m
A
NA

and mB
1 , . . . ,m

B
NB

, i.e. x is Bell
local with respect to the measurements mA

1 , . . . ,m
A
NA

and mB
1 , . . . ,m

B
NB

Proof. The result follows from Prop. 44 and Prop. 46 as without entanglement we can not have
steering and without steering we can’t have Bell non-locality.
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Corollary 18. Assume that the measurements mA
1 , . . . ,m

A
NA

are compatible then there is a local
hidden variable model for the ensemble p(k, l|i, j) given by the state x ∈ KA⊗̃KB and measure-
ments mA

1 , . . . ,m
A
NA

and mB
1 , . . . ,m

B
NB

, i.e. x is Bell local with respect to the measurements
mA

1 , . . . ,m
A
NA

and mB
1 , . . . ,m

B
NB

Proof. The result follows from Prop. 45 and Prop. 46 as if the measurements are compatible then
they do not steer the state x and without steering we can not have Bell non-locality.
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Conclusions
The aim of the review was to present a solid introduction to the framework of general probabilistic
theories in a way that we believe to be self-contained and understandable to a theoretical physicist
or mathematician. We hope that we have provided a complete review of the framework and we
hope that the reader can now almost skip the first few pages of a research paper concerning general
probabilistic theories.

This review is followed by papers written by the author and his co-authors where some of
the recent results on compatibility, steering and Bell non-locality in general probabilistic theories
are presented. The result of [59] on existence of incompatible two-outcome measurements were
already mentioned in the review. In [15] the state spaces with maximally incompatible two-
outcome measurements were characterized using the methods of linear programming. In [69] the
problem of compatibility of channels was investigated and generalizations of steering and Bell non-
locality for channels were introduced. The motivation behind these generalizations is different from
the standard motivation using EPR paradox and local realism. It is shown in [69] that steering
and Bell non-locality can be introduced as entanglement assisted incompatibility test. In [41] a
comparison of different operational principles that use the notion of compatibility was presented.
It was shown, that one can characterize state spaces where are measurements compatible with the
identity channel and where are measurements compatible with every other measurement and one
can also show that these two cases do not coincide.

The last paper [40] works with the more general framework of effect algebras in which a notion
of spectrality is investigated. Spectrality in the form of spectral decompositions of self-adjoint
operators is a well-known property of quantum theory. It is interesting to investigate spectrality
in the framework of effect algebras (and also in the framework of GPTs). Spectrality frequently
appears in derivations of quantum theory from operational axioms [24, 97, 98] and it was also
studied in the framework of GPTs [99, 100].

The last two mentioned papers [40, 41] are unpublished as in the time of writing this review.
[40] is in the second of peer-review and [41] already passed the first round of peer review and
corrections to the paper are being made.
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We study the compatibility of measurements on finite-dimensional compact convex state space in the framework
of general probabilistic theory. Our main emphasis is on formulation of necessary and sufficient conditions for
two-outcome measurements to be compatible and we use these conditions to show that there exist incompatible
measurements whenever the state space is not a simplex. We also formulate the linear programming problem for
the compatibility of two-outcome measurements.
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I. INTRODUCTION

Incompatibility lies deeply within quantum mechanics and
many of the famous and key aspects of quantum theories have
been traced to Heisenberg uncertainty principle, the no cloning
theorem, violations of Bell inequalities, and other notions
making use of compatibility (see [1] for recent review). In light
of these discoveries compatibility in the framework of general
probabilistic theories has been studied [2–5] in order to show
the difference between classical and nonclassical probabilistic
theories. Also the connection of compatibility and steering in
general probabilistic theories has been studied [6–8].

Recently incompatibility of measurements on quantum
channels and combs has been in question [9] as it potentially
could be used as a resource in quantum theory in a similar
way as an incompatibility of measurements on quantum
states [1]. The degree of compatibility (also called robustness
of incompatibility) has been studied for measurements on
channels and combs [2,9,10].

In the present paper we study the notion of compatibility of
measurements in the framework of probabilistic theories and
we show that every two measurements are compatible if and
only if the state space is a simplex. In one way this result has
clear physical interpretation—classical state space is always
a simplex and the existence of incompatible measurements is
often seen as one of the main aspects of quantum theories.

The paper is organized as follows. Section II contains
preliminary mathematical results and references. Note that
Sec. II B contains the definition of maximal face that (to
the best knowledge of the present author) was not defined
elsewhere (even though it has close ties to the notion of tangent
half space and tangent hyper-plane [11, p. 169]) and is later
used in Sec. IV. In Sec. III the measurements are defined.
In Sec. IV compatibility of measurements and degree of
compatibility are defined and it is shown that all measurements
are compatible if and only if the state space is a simplex.
Also the linear program for compatibility of two two-outcome
measurements is formulated.

II. PRELIMINARIES

We present preliminary mathematical knowledge used
in the paper. In all of the paper E will denote a real,

*martin.plavala@mat.savba.sk

finite-dimensional vector space equipped with the Euclidean
topology and K will denote a nonempty compact convex subset
of E. We will denote the convex hull of a set X as conv(X),
affine hull of a set X as aff(X), and interior of a set X as
int(X), and by ∂K we will denote the boundary of K , i.e.,
∂K = K \ int(K) as K is closed.

A. Structure of A(K )

By A(K) we will denote the set of real valued affine
functions on K and by A(K)+ we will denote the set of
positive affine functions on K , i.e., f ∈ A(K)+ if and only if
f (x) � 0 for every x ∈ K . We will denote constant functions
by the value they attain. Since K is compact and the functions
A(K) are continuous, every function reaches its maximum and
minimum over K at some point of K and we can introduce the
supremum norm for f ∈ A(K) as

‖f ‖A = sup
x∈K

|f (x)|.

The set A(K)+ is closed; convex, i.e., for λ ∈ R, 0 � λ �
1,f1,f2 ∈ A(K)+ we have λf1 + (1 − λ)f2 ∈ A(K)+; a cone,
i.e., for ν ∈ R, ν > 0, f ∈ A(K)+ we have νf1 ∈ A(K)+;
pointed, i.e., A(K)+ ∩ (−A(K)+) = {0}; and generating, i.e.,
for every f ∈ A(K) we have f+,f− ∈ A(K)+ such that f =
f+ − f−.

The closed, pointed, convex cone A(K)+ defines a partial
order � on A(K) given for f1,f2 ∈ A(K) as

f1 � f2 ⇔ f1 − f2 ∈ A(K)+

or equivalently f1 � f2 ⇔ (f1 − f2)(x) � 0,∀x ∈ K . The
partial order � will play a role in our formulation of linear
program for incompatibility of two-outcome measurements.

Definition 1. We say that e ∈ A(K)+ is an order unit if for
every f ∈ A(K)+ there is some ν ∈ R, ν > 0 such that

νe � f.

In the current setting it is easy to see that every strictly
positive function is an order unit. We will omit the simple
proof of the following fact.

Proposition 1. e ∈ A(K)+ is an order unit if and only if
e ∈ int(A(K)+).

We will also use the notion of a base of a cone.
Definition 2. Let Q ⊂ E be a cone, then a set B ⊂ Q is

called base of Q if for every 0 �= x ∈ Q there exist unique
y ∈ B and λ ∈ R such that x = λy.

2469-9926/2016/94(4)/042108(7) 042108-1 ©2016 American Physical Society
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To formulate the linear programming problem we will also
have to work with the dual space of A(K); we will denote
it A(K)∗. We will denote by A(K)∗+ the cone of positive
functionals dual to A(K)+, that is ψ ∈ A(K)∗+ if and only if
for every f ∈ A(K)+ we have ψ(f ) � 0.

Proposition 2. A(K)∗+ is a closed pointed convex cone.
Proof. It is straightforward to see that A(K)∗+ is a closed

convex cone. It is pointed because A(K)+ is generating. �
We define the dual norm for ψ ∈ A(K)∗ as

‖ψ‖∗ = sup
‖f ‖A�1

|ψ(f )|.

For x ∈ K let �x ∈ A(K)∗ be given for f ∈ A(K) as

�x(f ) = f (x).

The map � : K → A(K)∗ is called an evaluation map and it
is affine. It is easy to see that �[K] = {�x : x ∈ K} contains
only positive functionals with unit norm such that �x(1) = 1
for every x ∈ K . The converse is also true:

Proposition 3. �[K] = {ψ ∈ A(K)∗ : ‖ψ‖∗ = ψ(1) = 1}.
Proof. For proof see [12, Theorem 4.3]. Also note that

‖ψ‖∗ = ψ(1) = 1 implies ψ � 0. �
The set �[K] is sometimes referred to as the state space

as in general applications it is often easier to work with �[K]
rather than K .

B. Exposed faces and maximal faces of a convex set

In this subsection we will define faces, exposed faces, and
maximal faces and prove Proposition 4.

Definition 3. Let C ⊂ K be a convex set (that is, C is a
convex set that is a subset of K). We say that C is a face of
K if x ∈ C, λ ∈ R, 0 < λ < 1 and x = λy + (1 − λ)z implies
y,z ∈ C.

It is straightforward that K and the empty set are faces of
K and they are called the trivial faces. Apart from the trivial
faces it is known that all faces lie in ∂K [11, Corollary 18.1.3].
A face consisting of a single point is called an extreme point
of K .

Definition 4. Let C ⊂ K be a set where some affine
function f reaches its maximum (or minimum) over K , i.e.,
if maxx∈Kf (x) = Mf , then C = {x ∈ K : f (x) = Mf }. Such
C is called an exposed face of K .

Every exposed face is a face [11, p. 162]. An exposed face
consisting of single point is called an exposed point. It will be
important that the set of exposed points of K is dense in the set
of extreme points of K [11, Theorem 18.6] and that every face
of a closed convex set is closed [11, Corollary 18.1.1]. Also
note that not every extreme point must be an exposed point;
an example of this is presented in [11, p. 163].

We proceed by defining the notion of a maximal face.
Maximal faces are generalizations of the n − 1-dimensional
exposed faces of polytopes (that is, of convex sets that are
convex hulls of a finite number of points).

Definition 5. Let C ⊂ K be a nontrivial face, such that for
every x ∈ K \ C we have conv(C ∪ {x}) ∩ int(K) �= ∅; then
we say that C is a maximal face.

Note that we require maximal faces to be nontrivial, i.e., K
itself is not a maximal face. One can show that every maximal
face is exposed, because every maximal face is an intersection

of K and a hyperplane tangent to K . Also every intersection
of K and a hyperplane tangent to K is a maximal face. We
present a simple example of maximal faces of a triangle and
circle.

Example 1. Assume that K ⊂ R2 is a triangle. The vertices
of the triangle are extreme and exposed points of K , but they
are not maximal faces. In this case maximal faces are the edges
of the triangle. Now consider that K ⊂ R2 is the convex hull
of the unit circle; then every extreme point of K is a maximal
face.

Maximal faces will play a role in the notion of compatibility
of measurements as the condition conv(C ∪ {x}) ∩ int(K) �= ∅
will be of great importance.

Proposition 4. Let K ⊂ Rn be a nonempty convex compact
set. Then for every point x ∈ ∂K there are maximal faces
C1,C2 such that x ∈ C1 and x /∈ C2.

Proof. We will prove the statement in two steps. First we
will prove that that every point of ∂K belongs to some maximal
face. Then we prove that maximal faces that have a point in
common cannot form ∂K .

Let x ∈ ∂K; then there exists a nonconstant affine function
f that reaches its maximum over K in x [11, Colloraly
11.6.2]; let f (x) = Mf . The set G0 = {x ′ ∈ K : f (x ′) =
Mf } is an exposed face. If G0 is maximal face then the
proof is finished; if G0 is not a maximal face, then there
must exist a point y ∈ K \ G0 such that conv(G0 ∪ {y}) ∩
int(K) = ∅. The set conv(G0 ∪ {y}) does not have to be a
face itself, but since conv(G0 ∪ {y}) ∩ int(K) = ∅ then there
exists a nontrivial supporting hyperplane to K containing
conv(G0 ∪ {y}) (see [11, Theorem 11.6] for a definition of
a supporting hyperplane to K and proof of the statement). In
other words there must exist a nonconstant affine function f1

such that maxy∈K f1(y) = Mf1 and G1 = {x ′ ∈ K : f1(x ′) =
Mf1} ⊃ conv(G0 ∪ {y}), i.e., G1 is an exposed face of K and
x ∈ G1. Moreover for the dimensions of aff(G0) and aff(G1)
we must have dim(aff(G1)) > dim(aff(G0)), because y ∈ G1

and y /∈ G0. If G1 is a maximal face then the proof is finished;
if not then we can repeat the procedure to find exposed face
G2 ⊃ G1.

Since the affine span of every maximal face can be at most
n − 1 dimensional and the dimension of affine span of the
exposed faces Gi is strictly growing with i it is clear that
we can repeat this procedure at most n − 1 times to obtain a
maximal face; hence in this way to every x ∈ ∂K we can find
a maximal face that contains it.

Now we will proceed with the second part of the proof. Take
x ∈ ∂K , denote {Ci} the set of all maximal faces of K , and
assume x ∈ ∩iCi . Since every point of ∂K belongs to some
maximal face we must have ∪iCi = ∂K . Let us define positive
affine functions fi , such that Ci = {y ∈ K : fi(y) = 0}; then
since a finite-dimensional convex compact set is an intersection
of closed half spaces tangent to it [11, Theorem 18.8] we have
K = {y ∈ Rn : fi(y) � 0, ∀i}. Since we have fi(x) = 0, ∀i

then for any λ ∈ R, λ � 0, and z ∈ K we have

fi(λz + (1 − λ)x) = λfi(z) � 0

for every i. This implies that λz + (1 − λ)x ∈ K , which is in
contradiction with K being compact. �
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III. MEASUREMENTS ON K

Let E be a finite-dimensional real vector space equipped
with the Euclidean topology and let K ⊂ E be a compact
convex set. We will call K a state space as it represents a set of
all possible states of some system and the convex combination
is interpreted as probabilistic mixture. Let � be a nonempty
compact Hausdorff space and let P(�) denote the set of Borel
probability measures on �.

Definition 6. Measurements (also called observables) on K

with sample space � are affine mappings m : K → P(�).
The interpretation is that � represents all possible outcomes

of a certain measurement and is usually referred to as sample
space. For x ∈ K the measure m(x) ∈ P(�) is a general-
ized notion of assigning probabilities to the measurement
outcomes. Our definition follows the usual definitions of
measurements in probabilistic theories [4,6] but may be easily
generalized to locally compact sample spaces �. Let σ ⊂ � be
a measurable set; then by m(x; σ ) we will denote the measure
of the set σ with respect to the measure m(x).

Finite outcome measurements

Let the sample space � = {ω1, . . . ,ωk} be a finite set. Every
Borel probability measure μ ∈ P(�) is of the form

μ =
k∑

i=1

λiδωi

where δωi
is the Dirac measure centered at ωi and λi ∈ R, 0 �

λi � 1,
∑k

i=1 λi = 1. It follows that if m is a measurement on
K with finite sample space � then there always are functions
fj ∈ A(K)+, 0 � fj � 1 for j ∈ {1, . . . ,k}, ∑k

j=1 fj = 1
such that

m =
k∑

i=1

fiδωi
.

Remark 1. In the standard literature [13,14] usually it
is instead of writing m = ∑k

i=1 fiδωi
simply said that the

function fj represents the probability of the outcome ωj . To
simplify the notation we will use the formulation presented
above.

IV. COMPATIBILITY OF MEASUREMENTS

Assume that we wish to perform two distinct measurements
m1,m2 with two separate sample spaces �1,�2. We would like
to know whether there exists a measurement that performs both
m1 and m2 at the same time. To ask this question properly we
will introduce the concept of marginal measurement. When
working with the Cartesian product �1 × �2 we will always
consider the product topology on it given by the topologies of
�1,�2.

Definition 7. Let m : K → P(�1 × �2) be a measurement
on K with sample space �1 × �2. We say that m1 : K →
P(�1) is a marginal measurement of m if for every measurable
set σ ⊂ �1 and x ∈ K we have

m1(x; σ ) = m(x; σ × �2).

This definition can be formally understood as

m1(x; σ ) =
∫

�2

m(x; σ × dω2)

for every measurable set σ ⊂ �1. For the finite outcome
measurements the integral is replaced by a sum over the
outcomes; i.e., for m = ∑k

i,j=1 fij δ(ωi,ωj ), where fij ∈ A(K)+
and δ(ωi,ωj ) is the Dirac measure centered at (ωi,ωj ), we have

m1 =
k∑

i,j=1

fij δωi
.

It is straightforward to see that m1 is a measurement on K

with sample space �1 as the positivity and normalization to
1 follow from the properties of m. Now we are ready for the
definition of compatibility.

Definition 8. We will say that measurements m1 : K →
P(�1) and m2 : K → P(�2) are compatible if there exists
a measurement m : K → P(�1 × �2) such that m1,m2 are
marginal measurements of m.

This definition is the standard definition used for compati-
bility of measurements.

A natural question is, are there any incompatible measure-
ments? It is of course long known that incompatible mea-
surements in quantum mechanics exist, but mathematically
it is interesting to ask what properties of K imply that all
measurements are compatible.

Proposition 5. Let K be a simplex, that is, let {x1, . . . ,xn} be
the set of extreme points of K such that the points x1, . . . ,xn

are affinely independent. Then every measurement on K is
compatible with every other measurement on K .

Proof. Let K be a simplex; then there exists affine
functions bj : K → R, j ∈ {1, . . . ,n} defined by bj (xi) = δij .
These functions are positive, because for every y ∈ K we
have y = ∑n

i=1 λixi with
∑n

i=1 λi = 1 and 0 � λi � 1 for
every i.

Let m be a measurement on K with a sample space �; then
for y ∈ K , y = ∑n

i=1 λixi we have

m(y) =
n∑

i=1

λim(xi) =
n∑

i=1

bi(y)m(xi),

i.e., a measurement m on a simplex is uniquely described by
the measures m(xi) ∈ P(�).

Now let m1,m2 be measurements on K with the sample
spaces �1,�2, respectively; then for y ∈ K we have as above

mj (y) =
n∑

i=1

bi(y)mj (xi),

for j ∈ {1,2}. Let (m1 × m2)(xi) denote the product measure
obtained from the measures m1(xi) and m2(xi), that is, for
measurable sets σi ⊂ �i , i ∈ {1,2} we have

(m1 × m2)(xi ; σ1 × σ2) = m1(xi ; σ1)m2(xi ; σ2).

Let the measurement m : K → P(�1 × �2) be given as

m(y) =
n∑

i=1

bi(y)(m1 × m2)(xi);
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then it is easy to verify that m1 and m2 are marginal
measurements of m. �

Note that positivity of functions bj plays a crucial role
in the proof and these functions are positive only if K is a
simplex. Next we introduce the concept of a coin-toss (also
called trivial) measurement.

Definition 9. Let μ be some fixed Borel probability measure
on sample space �; then by coin toss we will refer to the
measurement given as

m(y) = μ

for every y ∈ K .
Coin-toss measurements usually represent noise, that is,

some random factor that affects the measurement outcomes. It
can be also interpreted as the most simple measurement when
we ignore any information about the state and simply “toss a
coin” and return whatever value we obtain. It is straightforward
that any coin-toss measurement is compatible with any other
measurement.

In the following we state the usual definition of the degree
of compatibility.

Definition 10. Let i ∈ {1,2} and let mi : K → P(�i) be a
measurement on K with sample space �i . Let τi : K → P(�i)
be some coin-toss measurements; then we define degree of
compatibility of measurements m1,m2 as

DegCom(m1,m2) = sup
0 � λ � 1

τ1,τ2

{λ : λm1 + (1 − λ)τ1,

λm2 + (1 − λ)τ2 are compatible}.
The reason for considering different trivial measurements τ1,τ2

is that the sample spaces may be different and even if they
would be the same due to our definitions we cannot pick
some preferred measure as, for example, a properly normed
Lebesgue measure on a compact subset of Rk . Note that the
supremum is taken also over the coin-toss measurements τ1,τ2.

Based on the analysis of compatibility presented in [1] we
obtain the following.

Proposition 6. For any two measurements mi : K →
P(�i), i ∈ {1,2}, we have DegCom(m1,m2) � 1

2 .
Proof. The idea is that we can always toss a fair two

sided coin, based on the result implementing one of the
measurements and substituting the other by the respective
coin-toss observable. In other words let μ1,μ2 be any Borel
probability measures on �1,�2, respectively, that give rise
to coin-toss measurements τi given as τi(y) = μi , i ∈ {1,2}.
Consider the measurement m : K → P(�1 × �2) given for
y ∈ K as

m(y) = 1
2 (μ1 × m2(y) + m1(y) × μ2).

It is straightforward to verify that the measurements 1
2 (m1 +

τ1) and 1
2 (m2 + τ2) are marginal measurements of m. �

A similar result has been observed even for compatibility
of quantum channels [15].

A. Compatibility of two-outcome measurements

In general it may be hard to decide whether measurements
m1 and m2 are compatible but in the case of two-outcome
measurements, that is, in the case when �1,�2 contain

only two points, we will formulate necessary and sufficient
conditions for the measurements m1,m2 to be compatible.
These conditions may be generalized in the same manner to
general finite outcome measurements.

Let �1 = �2 = � = {ω1,ω2} be the sample space of the
measurements m1,m2; then they are of the form

mi = fiδω1 + (1 − fi)δω2

for i ∈ {1,2}. Also every measurement m on K with sample
space � × � is of the form

m = g11δ(ω1,ω1) + g12δ(ω1,ω2) + g21δ(ω2,ω1) + g22δ(ω2,ω2),

where g11,g12,g21,g22 ∈ A(K)+ and δ(ωj ,ωk) is a Dirac measure
on � × � centered at (ωj ,ωk) ∈ � × �. Assume that m1 and
m2 are marginal measurements of m; then we obtain

g11 + g12 = f1, (1)

g21 + g22 = 1 − f1, (2)

g11 + g21 = f2, (3)

g12 + g22 = 1 − f2. (4)

These equations imply g11 + g12 + g21 + g22 = 1, but not
gjk � 0, j,k ∈ {1,2}, and they in general do not have a unique
solution. Let g11 = p, 0 � p � 1; then a general solution to
Eqs. (1)–(4) is

g12 = f1 − p,

g21 = f2 − p,

g22 = 1 − f1 − f2 + p,

which imply the inequalities

f1 � p, (5)

f2 � p, (6)

1 + p � f1 + f2, (7)

that come from gjk � 0 for all j,k ∈ {1,2}. In general there
may not exist such p satisfying Eqs. (5)–(7); in that case
the measurements are incompatible. But if m is a joint
measurement of m1,m2 then Eqs. (5)–(7) must be satisfied
and Eqs. (1)–(4) are satisfied simply because m1 and m2 are
marginals of m. We have proved the following.

Proposition 7. Let m1,m2 be two-outcome measurements
on K given as

mi = fiδω1 + (1 − fi)δω2

for i ∈ {1,2}; then they are compatible if and only if there is
a function p ∈ A(K)+, such that 0 � p � 1 and Eqs. (5)–(7)
are satisfied. Similar results in terms of operators in the case
of measurements on states were obtained in [2,10].

Now we will proceed by deriving some conditions on the
incompatibility of two-outcome measurements based on the
results of Proposition 7 that will help us prove that there exist
incompatible measurements if and only if K is not a simplex.

The main idea is that we will construct two functions
f1,f2 ∈ A(K)+ that reach both zero and one on K and for
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the exposed faces

Fi = {x ∈ K : fi(x) = 0}
i ∈ {1,2} it holds that conv(F1 ∪ F2) ∩ int(K) �= ∅. Then by
the Eqs. (5) and (6) we have that p(x) = 0 for every x ∈
conv(F1 ∪ F2). Since conv(F1 ∪ F2) ∩ int(K) �= ∅ and p � 0
we get p = 0. Then by Eq. (7) we must have f1 + f2 � 1 if
the measurements are compatible so we will show that we can
construct functions f1,f2 with the mentioned properties such
that f1(y) + f2(y) > 1 for some y ∈ K whenever K is not a
simplex.

The ideas presented above were inspired by an example of
incompatible measurements on a square presented in [4].

Proposition 8. Let x ∈ K be an extreme point and let F be a
maximal face disjoint from {x}; then there exist incompatible
two-outcome measurements on K if F does not contain all
other extreme points of K except for x.

Proof. For the definition of a maximal face see Definition 5
and remember that according to the definition K itself is not a
maximal face. Note that closedness of K will play a role as it
implies closedness of every face of K [11, Corollary 18.1.1].

Assume that there is one maximal face F disjoint from x,
but F does not contain all extreme points of K except for
x, i.e., there is an extreme point y ∈ K , such that y /∈ F and
y �= x. Since F , {x}, {y} are closed sets and {y} is disjoint from
both F and {x}, then there exists some open neighborhood Nε

containing y, such that x /∈ Nε and F ∩ Nε = ∅. There is an
exposed point z ∈ Nε as the set of exposed points is dense in
the set of extreme points of K [11, Theorem 18.6]. For the
same reason we will consider x an exposed point as well. Now
let us construct positive affine function f1,fx,fz such that

F1 = {w ∈ K : f1(w) = 0},
{x} = {w ∈ K : fx(w) = 0},
{z} = {w ∈ K : fz(w) = 0},

and

max
w∈K

f1(w) = max
w∈K

fx(w) = max
w∈K

fz(w) = 1.

The functions f1,fx,fz give rise to two-outcome measure-
ments m1,mx,mz given as

m1 = f1δω1 + (1 − f1)δω2,

mx = fxδω1 + (1 − fx)δω2,

mz = fzδω1 + (1 − fz)δω2 .

Since we have

conv(F1 ∪ {x}) ∩ int(K) �= ∅,

conv(F1 ∪ {z}) ∩ int(K) �= ∅,

we must have by Proposition 7

f1 + fx � 1, f1 + fz � 1,

for the measurements m1,mx and m1,mz to be compati-
ble. From f1 + fx � 1 we get {w ∈ K : f1(w) = 1} = {x}
and from f1 + fz � 1 we get {w ∈ K : f1(w) = 1} = {z},
which is a contradiction with x �= z implied by x /∈ Nε and
z ∈ Nε. �

Proposition 9. Let K ⊂ Rn be a compact convex set; then
there exist incompatible measurements on K whenever K is
not a simplex.

Proof. We will rely on the results of Proposition 8. Assume
that x ∈ K is an extreme point that is affinely dependent
on other extreme points, i.e., there are extreme points
{y1, . . . ,yn} ⊂ K such that x = ∑n

i=1 αiyi with
∑n

i=1 αi = 1
and let F denote the maximal face disjoint from {x}. Now let
us construct a nonconstant positive affine function f ∈ A(K)+
such that

F = {z ∈ K : f (z) = 0}.
Again the function f exists as F is an exposed face. Since
x = ∑n

i=1 αiyi , {y1, . . . ,yn} ∈ F and f is affine, we have

f (x) =
n∑

i=1

αif (yi) = 0

and we must have x ∈ F , which is a contradiction. Hence the
set of exposed points must be affinely independent and finite
and K must be a simplex. �

It is an open question whether it can be in an easier fashion
showed that the compactness and convexity of K together with
compatibility of every two-outcome measurement imply the
Riesz decomposition property [16, p. 84] as it is known that it
is equivalent to K being a simplex [16, Corollary II.3.11]. It
is also known that in more general settings of effect algebras
the result does not hold, i.e., there are effect algebras that are
compatible but that do not satisfy the Riesz decomposition
property (see [17, Example 3.6] for an example).

B. Linear programming problem for compatibility
of two-outcome measurements

We will formulate the problem of compatibility of two two-
outcome measurements as a problem of linear programming
[18] similar to the one obtained in [2]. We will start with
the results of Proposition 7 and we will construct the linear
programming problem from there.

Let m1,m2 be two-outcome measurements with sample
space � = {ω1,ω2} given as

mi = fiδω1 + (1 − fi)δω2

for i ∈ {1,2} and let τ represent a coin-toss measurement given
as

τ = 1
2 (δω1 + δω2 ).

In the following calculations we will restrict ourselves only to
this special coin-toss observable as it is sufficient to determine
whether the measurements m1,m2 are compatible.

We want to know what is the highest possible λ ∈ [ 1
2 ,1],

such that the measurements λm1 + (1 − λ)τ,λm2 + (1 − λ)τ
are compatible. In terms of Proposition 7 we want to know what
is the highest value of λ such that there exists p̃ ∈ A(K)+ such
that the conditions

λf1 + 1 − λ

2
� p̃, λf2 + 1 − λ

2
� p̃,

1 + p̃ � λ(f1 + f2) + (1 − λ)
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are satisfied. Denoting p = p̃

λ
and μ = 1−λ

λ
we obtain

μ

2
− p � −f1, (8)

μ

2
− p � −f2, (9)

p � f1 + f2 − 1. (10)

Now it is important to realize that maximizing λ is equivalent to
minimizing μ. In the following we will introduce new partially
ordered vector spaces and a linear map as the problem of linear
programming will be formulated in their terms.

Let x ∈ R × A(K); then x = (α,g) for α ∈ R and g ∈
A(K). We introduce partial ordering on R × A(K) by the
relation

(α,g) = x � 0 ⇔ α � 0, g ∈ A(K)+.

The topological dual to R × A(K) is R × A(K)∗; for x =
(α,g), c̃ ∈ R × A(K)∗, c̃ = (β,ψ), β ∈ R, ψ ∈ A(K)∗ we
have

〈c̃,x〉 = αβ + ψ(g).

We will also use A(K) × A(K) × A(K) equipped with the fol-
lowing partial order: let (g1,g2,g3) ∈ A(K) × A(K) × A(K);
then (g1,g2,g3) � 0 if and only if gi � 0 for every i ∈ {1,2,3}.

Let T : R × A(K) → A(K) × A(K) × A(K) be a linear
map given as

T (α,g) =
(

− g + α

2
,−g + α

2
,g

)
,

where α
2 stands for the constant function attaining the value α

2 .
It is straightforward to see that T is linear.

Proposition 10. Let c ∈ R × A(K)∗, c = (1,0), F ∈
A(K) × A(K) × A(K), F = (−f1,−f2,f1 + f2 − 1) and x ∈
R × A(K), x = (μ,p); then

inf〈c,x〉
x � 0

T x � F

is a primal linear programming problem. When the reached
minimum is zero then the measurements m1,m2 are compati-
ble. Moreover, there always exists a primal feasible plan.

Proof. The proof is straightforward. We have 〈c,x〉 = μ for
the given c, x � 0 translates to μ � 0, and p � 0. Note that
μ � 0 corresponds to λ � 1. T x � F is the same as

(
− p + μ

2
,−p + μ

2
,p

)
� (−f1,−f2,f1 + f2 − 1)

which is in turn equivalent to conditions (8)–(10).
Since μ = 1−λ

λ
then μ = 0 implies λ = 1. There always

exists a primal feasible plan as we know that for λ = 1
2 the

measurements are always compatible (see Proposition 6). �
Now that we have the primal problem we will find the dual

problem to obtain another condition on the compatibility of
measurements m1,m2.

Proposition 11. The dual problem to the problem introduced
in Proposition 10 is given as

sup〈F,l〉
T ∗l � c

l � 0

where l ∈ A(K)∗ × A(K)∗ × A(K)∗ and T ∗ is given by the
relation 〈l̃,T x̃〉 = 〈T ∗ l̃,x̃〉 for every l̃ ∈ A(K)∗ × A(K)∗ ×
A(K)∗ and x̃ ∈ R × A(K), i.e., T ∗ : A(K)∗ × A(K)∗ ×
A(K)∗ → R × A(K)∗, such that for (ψ1,ψ2,ψ3) ∈ A(K)∗ ×
A(K)∗ × A(K)∗ we have

T ∗(ψ1,ψ2,ψ3) = (
1
2 (ψ1 + ψ2)(1),−ψ1 − ψ2 + ψ3

)
where 1 stands for the constant function on K and ψi(1) is
the value of functional ψ1 on this function, that is, for some
z11,z12 ∈ K and a1,a2 ∈ R, a1 � 0, a2 � 0 we have ψ1 =
a1φz1 − a2φz2 and ψ1(1) = a1 − a2.

Proof. The only thing we need to do is to find T ∗; the rest
follows from the relation between primal and dual problems
[18, p. 163].

From the relation 〈l̃,T x̃〉 = 〈T ∗ l̃,x̃〉 for l̃ = (ψ1,ψ2,ψ3) ∈
A(K)∗ × A(K)∗ × A(K)∗ and x̃ = (α,g) ∈ R × A(K) we get

〈l̃,T x̃〉 =
〈
(ψ1,ψ2,ψ3),

(
−g + α

2
,−g + α

2
,g

)〉

= α

2
(ψ1 + ψ2)(1) + (−ψ1 − ψ2 + ψ3)(g)

=
〈(

1

2
(ψ1 + ψ2)(1),−ψ1 − ψ2 + ψ3

)
,(α,g)

〉

= 〈T ∗ l̃,x̃〉. �
Proposition 12. The duality gap between the primal problem

given by Proposition 10 and the dual problem given by
Proposition 11 is zero.

Proof. The duality gap is zero if there is a primal feasible
plan and the cone

Q = {(T x̃,〈c,x̃〉) : x̃ ∈ R × A(K),x̃ � 0},
Q ⊂ A(K) × A(K) × A(K) × R,

where c = (1,0) as in Proposition 10 is closed [18, Theorem
7.2]. To show that Q is closed we will use the fact that if V,W

are topological vector spaces then QV ⊂ V is a cone with
compact convex base and TV : V → W is a continuous linear
transformation, such that ker(TV ) ∩ QV = {0}; then the cone
TV (QV ) is closed [18, Lemma 7.3].

Because the cone A(K)+ is generating there exists a base
of positive functions h1, . . . hn such that for every h̃ ∈ A(K)+
we have h̃ = ∑n

i=1 λihi for λi � 0. We introduce the L1 norm
on A(K): for h′ ∈ A(K), h′ = ∑n

i=1 νihi we have ‖h′‖L1 =∑n
i=1 |νi |. Note that this norm is an affine function on A(K)+.
We can introduce a norm on R × A(K) as follows: let

x̃ = (α,g) ∈ R × A(K); then

‖x̃‖R×A(K) = |α| + ‖g‖L1.

The base of the positive cone in R × A(K) is the set

K = {x̃ ∈ R × A(K) : ‖x̃‖R×A(K) = 1}.
K is compact and convex, because the norm ‖ · ‖R×A(K) is
continuous and for α � 0 and g ∈ A(K)+ it is affine.
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The map T ′ : R × A(K) → A(K) × A(K) × A(K) × R
given as

T ′x̃ = (T x̃,〈c,x̃〉)
is linear and continuous. If for (α,g) = x̃ ∈ R × A(K) it holds
that T ′x̃ = 0 then we have to have x̃ = (0,0) as 〈c,x̃〉 = 0
implies α = 0 and T x̃ = (0,0,0) implies g = 0. In conclusion
we have ker(T ′) = {(0,0)}.

This shows that the cone Q is closed and since we have
already showed in Proposition 10 that a primal feasible plan
exists the duality gap is zero. �

We will proceed with rewriting the dual problem from
Proposition 11 into a more usable form to obtain a necessary
and sufficient condition for two two-outcome measurements to
be incompatible. We will start from the dual problem stated in
Proposition 11. Since l ∈ A(K)∗ × A(K)∗ × A(K)∗ and l � 0
we must have some z1,z2,z3 ∈ K and a1,a2,a3 ∈ R, ai � 0,
i ∈ {1,2,3}, such that l = (a1φz1 ,a2φz2 ,a3φz3 ) in the formalism
of Sec. II A. From T ∗l � c we obtain the conditions

1
2 (a1 + a2) � 1, a3φz3 � a1φz1 + a2φz2 .

Moreover we have

〈F,l〉 = −a1f1(z1) − a2f2(z2) + a3(f1(z3) + f2(z3) − 1).

Thus we have proved the following.
Proposition 13. The two-outcome measurements m1,m2

corresponding to the functions f1,f2 are incompatible if
and only if there exist positive numbers a1,a2,a3 ∈ R
and z1,z2,z3 ∈ K such that Eqs. (11) are satisfied and
〈F,l〉 > 0.

To make 〈F,l〉 > 0 we could first consider f1(z1) =
f2(z2) = 0 as then only f1(z3) + f2(z3) > 1 would be re-
quired. In this case it would be easy to satisfy Eqs. (11) by suit-
able choice of a1,a2,a3 whenever conv({z1,z2}) ∩ int(K) �= ∅
as then for some ν ∈ [0,1] we would have νz1 + (1 − ν)z2 ∈
int(K) and φνz1+(1−ν)z2 would be an order unit in A(K)∗.
As a matter of fact, this is exactly the idea we used to
prove Proposition 9. By similar methods of semidefinite

programming it was shown that in the case of measurements
on states the value of 〈F,l〉 corresponds to maximal violation
of the Clauser-Horne-Shimony-Holt Bell inequality [2].

V. CONCLUSIONS

Incompatibility of measurements is one of the key aspects
of quantum theories and, as our results have shown, in finite-
dimensional cases it only differentiates classical probabilistic
theories from general probabilistic theories. The quest for
finding some essentially quantum restriction on probabilistic
theories also considered in [3,5] is not over as such restriction
would probably help us to understand quantum theories better
and more deeply.

It is an open question whether our results hold also in the
infinite-dimensional case. A possible approach to generalize
our results would be to prove it using the Riesz decomposition
property and to observe whether the proof may be generalized
for infinite-dimensional state space. It was already proved in
the framework of quantum logic [19] that if the state space
is a Bauer simplex then the set of yes-no observables is
compatible in quantum logic sense. There are hints that the
compatibility in quantum logic sense and compatibility as
defined in Definition 8 coincide as it can be showed that the
conditions for compatibility of two-outcome measurements
given by Proposition 7 may be rewritten in a similar way as in
[19, Theorem 2].
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Conditions on the existence of maximally incompatible two-outcome measurements
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We formulate the necessary and sufficient conditions for the existence of a pair of maximally incompatible
two-outcome measurements in a finite-dimensional general probabilistic theory. The conditions are on the
geometry of the state space; they require the existence of two pairs of parallel exposed faces with an additional
condition on their intersections. We introduce the notion of discrimination measurement and show that the
conditions for a pair of two-outcome measurements to be maximally incompatible are equivalent to requiring
that a (potential, yet nonexisting) joint measurement of the maximally incompatible measurements would have
to discriminate affinely dependent points. We present several examples to demonstrate our results.
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I. INTRODUCTION

General probabilistic theories (GPTs) form a general
framework that provides a unified description of all physical
systems known today. In such theories, the central object is the
state space represented by a convex set and the measurements
(or more general devices) are seen as certain maps on the state
space (see, e.g., [1]). The study of such theories began some
time ago, related to mathematical foundations of quantum
mechanics, but has gained a great deal of attention recently
in connection with information theory. It was identified that
several nonclassical effects that we know from quantum
mechanics, such as steering and Bell nonlocality [2], can be
found in this broader framework.

It has been known since the beginning of quantum theory
that some quantum mechanical measurements cannot be
implemented simultaneously; this phenomenon is referred
to as incompatibility of measurements. It was shown that
such measurements appear in any nonclassical GPT [3].
Moreover, one can violate even the bounds that hold in
quantum mechanics: In finite dimensions, the minimal degree
of compatibility of quantum measurements is bounded from
below by a dimension-dependent constant [4], while a GPT
may admit pairs of maximally incompatible two-outcome
measurements [5], i.e., two-outcome measurements such that
their degree of compatibility attains the minimal value of 1

2 .
A long-standing question is what the properties that single

out quantum mechanics in the framework of GPTs are. To
answer this question, it is important to know the relation of
the manifestations of nonclassical effects to the geometry of
state spaces. One step in this direction was made in [3], where
it was proved that the nonexistence of incompatible pairs of
two-outcome measurements characterizes classical theories,
that is, such GPTs where the state space is a simplex. In the
present work we aim at the other extreme, namely, we find
necessary and sufficient conditions for a pair of maximally
incompatible measurements to exist in a given GPT.

This question is of interest also because of the relation of
incompatibility to other nonclassical features: It was shown

*jenca@mat.savba.sk
†martin.plavala@mat.savba.sk

that one would need maximally incompatible measurements
for maximal violation of Bell inequalities [6,7]. We obtain
conditions that restrain the geometry of the state spaces for
which this is possible. The essence of what is required was
already captured in [5] in the example of the square state space.
On the other hand, we prove that maximally incompatible
measurements exist if the state space is the set of quantum
channels; this is related to the results recently found in [8],
where a somewhat different notion of the compatibility of
measurements on quantum channels and combs was studied.
We also introduce the notion of discrimination two-outcome
measurement and show how the concept of discrimination
measurements is connected to maximally incompatible mea-
surements. Our results are demonstrated on some examples.

The paper is organized as follows. In Sec. II we provide
a quick review of GPTs and of the notation we will use.
Section III deals with measurements and their compatibility,
especially the two-outcome measurements. In Sec. IV we
introduce the degree of compatibility and show its relation
to a linear program for the compatibility of two-outcome
measurements. In Sec. V we formulate and prove the necessary
and sufficient conditions for the existence of maximally
incompatible two-outcome measurements. In Sec. VI we
introduce the concept of discrimination measurements and
study their (in)compatibility. We summarize in Sec. VII.

II. STRUCTURE OF A GENERAL
PROBABILISTIC THEORY

We present the standard definition of a finite-dimensional
GPT in a quick review just to settle the notation. See, e.g., [9]
for more information.

In a GPT, a state represents a mathematical description
of a procedure for preparation of a physical system. To
express the possibility of forming probabilistic mixtures of
such procedures, it is assumed that the state space is a convex
subset of a vector space V . The convex combinations are
interpreted operationally (see, e.g., [10], Pt. 2). We will assume
below that V is finite dimensional and the state space is a
compact convex subset K ⊂ V .

Measurements on the system are represented by maps as-
signing to each state the corresponding outcome probabilities.

2469-9926/2017/96(2)/022113(7) 022113-1 ©2017 American Physical Society
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These maps are assumed affine, that is, mapping a convex
mixture of states to the corresponding convex mixture of
probability distributions on the set of outcomes. The two-
outcome measurements (yes-no experiments) are represented
by affine maps f : K → [0,1], mapping each state x ∈ K to
the corresponding probability of success (the “yes” outcome).
Such maps are called effects.

We next list some basic definitions and briefly present the
framework of ordered vector spaces of affine functions, which
will be useful in the following. A good handbook for some of
the standard notions from convex analysis is [11].

Let V be a finite-dimensional real vector space. For any
X ⊂ V , conv(X) will denote the convex hull of X and aff(X)
the affine hull of X. If X is convex, then a face of X is a convex
subset F ⊆ X such that λx + (1 − λ) ∈ F for some x,y ∈ X

and λ ∈ (0,1) implies that x,y ∈ F .
Let K ⊂ V be a compact convex subset and let A(K) denote

the set of affine functions f : K → R. Then A(K) is a finite-
dimensional real vector space. The partial order on A(K) is
introduced in a natural way: Let f,g ∈ A(K); then f � g if
and only if f (x) � g(x) for all x ∈ K . The corresponding
positive cone is the convex cone of positive affine functions,
which will be denoted by A(K)+. The constant functions are
denoted by the value they attain, i.e., 1(x) = 1 and 0(x) = 0
for all x ∈ K .

The set of effects on K will be denoted by E(K), that is,
E(K) = {f ∈ A(K) : 1 � f � 0}. For any f ∈ E(K), the set

f −1(0) = {x ∈ K, f (x) = 0}

is a face of K . A face of this form is called an exposed face. Two
exposed faces F0 and F1 of E(K) are parallel if F0 = f −1(0)
and F1 = f −1(1) = (1 − f )−1(0).

Let A(K)∗ be the vector space dual to A(K) and let 〈ψ,f 〉
denote the value of the functional ψ ∈ A(K)∗ on f ∈ A(K).
The positive cone A(K)+ defines the dual order on A(K)∗ as
follows: For ψ1,ψ2 ∈ A(K)∗, ψ1 � ψ2 if and only if 〈ψ1,f 〉 �
〈ψ2,f 〉 for every f ∈ A(K)+. Here the positive cone is the dual
cone A(K)∗+ = {ψ ∈ A(K)∗ : ψ � 0} of positive functionals.

For any x ∈ K let φx denote the functional in A(K)∗, given
by the evaluation 〈φx,f 〉 = f (x). Then clearly φx is positive
and normalized: 〈φx,1〉 = 1. On the other hand, it can be seen
that every positive normalized functional ψ ∈ A(K)∗ is of the
form ψ = φx for some x ∈ K (see, e.g., [12]). This implies
that the set SK = {φx : x ∈ K} is a base of the cone A(K)∗+,
i.e., for every ψ ∈ A(K)∗+, ψ 	= 0, there is a unique x ∈ K

and unique α ∈ R, α > 0, such that ψ = αφx .
The simplest example of a state space is an (n − 1)-

dimensional simplex �n; this describes the state space of a
classical system. We have A(�n) 
 Rn; A(�n)+ is identified
with the set of vectors with non-negative entries and the effects
are given by vectors with entries in [0,1].

A quantum state space is the set of density operators S(H)
on a finite-dimensional Hilbert space H. The space A(S(H))
is identified with the space Bh(H) of self-adjoint operators
on H by A(ρ) ≡ Tr Aρ. Here the positive cone is the cone of
positive-semidefinite operators B(H)+, the constant 1 is the
identity operator 1, and the effects satisfy 0 � E � 1.

The ensuing two further examples will be important in the
following.

Example 1. The square state space is defined as the convex
hull S := conv{x00,x01,x10,x11} of points xij ∈ V , satisfying
x00 + x11 = x01 + x10. The space A(S) can be identified with
R3, with a positive cone A(S)+ whose base is again a square.
The vertices of this square correspond to the extremal effects,
determined by

fk,l(xn1,n2 ) =
{

1 for nk = l

0 otherwise,

where n1,n2,k,l ∈ {0,1}. The set of effects E(S) is a double
pyramid, with base formed by the above square and the two
apexes given by the 0 and 1 functionals.

Example 2. Let C(H) denote the set of completely positive
trace-preserving maps B(H) → B(H); such maps are often
called quantum channels. We will use the standard and well-
known definitions that may be found in [10].

Let H ⊗ H denote the tensor product of H with itself and
let Tr1 denote the partial trace. Using the Choi representation
of quantum channels, we have the identification

C(H) ≡ {C ∈ Bh(H ⊗ H) : Tr1(C) = 1,C � 0}.
This is clearly a finite-dimensional state space. Affine func-
tions on C(H) have the form C → Tr CA for some A ∈
Bh(H ⊗ H), but note that A and A + 1⊗ X define the same
function if X ∈ Bh(H) and Tr X = 0. Moreover, all elements
of A(C(H))+ are given by some positive operator A and all
effects have the form C → Tr CM , where M ∈ Bh(H ⊗ H) is
such that

0 � M � 1⊗ σ

for some σ ∈ S(H) [1,13], so that effects are given by two-
outcome process positive-operator-valued measures defined in
[14].

III. COMPATIBLE MEASUREMENTS IN GPT

Let K be a state space and let 	 be the set of all possible
outcomes of some measurement. In the most general case,
	 carries the structure of a measurable space, but since we
are mostly interested in two-outcome measurements, we will
assume that 	 is a finite set. Let P(	) be the set of all
probability measures on 	.

Definition 1. A measurement m on K with sample space 	

is an affine map

m : K → P(	).

Let 	 = {ω1, . . . ,ωk} and let m be a measurement on
K with sample space 	. Then x → m(x; ωi) := m(x)(ωi)
is clearly an effect on K with

∑
i m(·; ωi) = 1 and any

such k-tuple of effects determines a measurement on K . In
particular, the general form of a two-outcome measurement is

mf (x) := f (x)δ1 + (1 − f )(x)δ2,

where f ∈ E(K) and δ1 = δω1 and δ2 = δω2 are the two Dirac
measures on 	 = {ω1,ω2}. In other words, this means that
f (x) is the probability of getting the outcome ω1 by the
measurement mf if the system is prepared in the state x ∈ K .

We will present the standard definition of compatibility of
measurements [15].

022113-2



CONDITIONS ON THE EXISTENCE OF MAXIMALLY . . . PHYSICAL REVIEW A 96, 022113 (2017)

Definition 2. Let m1 and m2 be measurements on K with
sample spaces 	1 and 	2, respectively. We say that the
measurements m1 and m2 are compatible if there exists a
measurement m on K with sample space 	1 × 	2 such that
m1 and m2 are marginals of m: For all x ∈ K and A1 ⊂ 	1

and A2 ⊂ 	2 we have

m1(x; A1) = m(x; A1 × 	2),

m2(x; A2) = m(x; 	1 × A2).

In this case, m is called a joint measurement of m1 and m2.
In the following, we deal with the compatibility of two-

outcome measurements, given by two effects f,g ∈ E(K).
Proposition 1. The two-outcome measurements mf and mg

are compatible if and only if there exists a function p ∈ E(K)
such that

f � p, (1)

g � p, (2)

1 + p � f + g. (3)

Moreover, any joint measurement of mf and mg is of the form

m = pδ(1,1) + (f − p)δ(1,2) + (g − p)δ(2,1)

+ (1 + p − f − g)δ(2,2), (4)

where δ(i,j ) = δ(ωi,ωj ) and p ∈ E(K) satisfies (1)–(3).
Proof. Let 	 = {ω1,ω2} and let m : K → P(	 × 	) be a

joint measurement of mf and mg . Let us define hij := m( ·
,(ωi,ωj )) ∈ E(K), i,j = 1,2. Then we must have

f = h11 + h12, 1 − f = h21 + h22,

g = h11 + h21, 1 − g = h12 + h22,

which follows from Definition 2. Denoting h11 = p, one can
show that this is equivalent to the conditions (1)–(3) and m is
given by (4). See [3] for a more throughout derivation of these
conditions. �

Proposition 2. mf and mg are compatible if and only if
m(1−f ) and mg are compatible.

Proof. Assume that mf and mg are compatible and let p ∈
E(K) satisfy (1)–(3). If we let p′ = g − p, then Eq. (2) implies
p′ � 0, Eq. (3) implies 1 − f � p′, p � 0 implies g � p′, and
Eq. (1) implies 1 + p′ � (1 − f ) + g. Since 1 − (1 − f ) = f

it is clear that the compatibility of m(1−f ) and mg implies the
compatibility of mf and mg in the same manner. �

IV. DEGREE OF COMPATIBILITY

A degree of compatibility gives a way to quantify the
(in)compatibility of a pair of measurements. One possibility to
introduce such a degree in any GPT is to use the least amount
of noise needed to make the measurements compatible [see
[16,17] for some different (but related) definitions]. We first
introduce the coin-toss measurements that will represent the
noise.

Definition 3. A coin-toss measurement on K is a constant
map

τ (x) = μ ∈ P(	), x ∈ K.

Such a measurement ignores the input state and just
returns the outcomes according to some fixed probability
distribution. It is straightforward that a coin-toss measurement
is compatible with any other measurement. Observe also that
any pair of measurements m1 and m2 can be made compatible
by mixing with a coin toss. Indeed, let τ be a coin toss and let

m′
i = 1

2mi + 1
2τ.

The measurements m′
1 and m′

2 are compatible: The joint
measurement consists of choosing one of the measurements at
random (by flipping a coin) and replacing the other by τ . This
observation leads to the following definition of the degree of
compatibility, introduced in [4].

Definition 4. Let m1 and m2 be two measurements on K

with sample space 	. The degree of compatibility of m1 and
m2 is defined as

DegCom(m1,m2) = sup
0 � λ � 1

τ1,τ2

{λ : λm1 + (1 − λ)τ1,λm2

+ (1 − λ)τ2 are compatible},
where the supremum is taken over all coin-toss measurements
τ1 and τ2.

The interpretation of this measure of compatibility is clear:
The convex combination is a mathematical representation of
making the measurements m1 and m2 less sharp by adding
noise in the form of the coin tosses. As the value of λ decreases,
the measurements get less and less sharp, until at some point
they become compatible. If for a pair of measurements this
happens at a larger value of λ than for another pair, we may
say that the first pair is more compatible.

It can be seen from the remarks after Definition 3 that
the lowest possible value of degree of compatibility is 1

2 .
If this happens for a pair of measurements, it means that
the only way to make them compatible is to discard one
of them completely and replace it by a coin toss. It is
known that such pairs of measurements exist for some
state spaces [5], but not in finite-dimensional quantum
mechanics [4].

Definition 5. We will say that two measurements are
maximally incompatible if DegCom(mf ,mg) = 1

2 .
We will now turn to the study of the degree of compatibility

of two-outcome measurements mf and mg . The following
statement follows immediately from Proposition 2.

Corollary 1. Let mf and mg be two-outcome measurements.
Then

DegCom(mf ,mg) = DegCom(m(1−f ),mg)

= DegCom(mf ,m(1−g))

= DegCom(m(1−f ),m(1−g)).

It was shown in [17] that compatibility of mf and mg can
be formulated as a problem of linear programming. A similar
linear program was introduced in [3] and it was shown that the
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dual program is of the form

sup (a3[f (z3) + g(z3) − 1] − a1f (z1) − a2g(z2)),

a1 + a2 � 2, a3φz3 � a1φz1 + a2φz2 ,

where z1,z2,z3 ∈ K and a1,a2,a3 are non-negative numbers.
Let β denote the supremum. Then we have

β = 1 − DegCom1/2(mf ,mg)

DegCom1/2(mf ,mg)
,

where

DegCom1/2(mf ,mg) := sup
0�λ�1

{λ : λmf + (1 − λ)τ,λmg

+ (1 − λ)τ are compatible}
is the degree of compatibility provided by mixing the mea-
surements mf and mg with the fixed coin-toss measurement
τ = 1

2 (δ1 + δ2). The measurements mf and mg are compatible
if and only if β = 0. We clearly have

DegCom1/2(m1,m2) � DegCom(mf ,mg),

so DegCom1/2(mf ,mg) = 1 implies DegCom(mf ,mg) = 1
and DegCom(mf ,mg) = 1

2 implies DegCom1/2(mf ,mg) = 1
2 .

We next show that if mf and mg are incompatible, the
supremum in the above program is reached with a1 + a2 = 2,
which allows us to rewrite the program in a more convenient
way. So assume that the measurements mf and mg are
incompatible. Then we have β > 0, which implies a1 + a2 >

0. Assume that the supremum is reached for some a1,a2,a3

and z1,z2,z3 such that a1 + a2 < 2. Define

a′
1 = 2

a1 + a2
a1,

a′
2 = 2

a1 + a2
a2,

a′
3 = 2

a1 + a2
a3.

It is straightforward to see that a′
3φz3 � a′

1φz1 + a′
2φz2 . More-

over,

β < a′
3[f (z3) + g(z3) − 1] − a′

1f (z1) − a′
2g(z2),

which is a contradiction. It follows that in the case when the
measurements mf and mg are incompatible we can write the
linear program as

sup 2(η[f (z3) + g(z3) − 1] − νf (z1) − (1 − ν)g(z2)),

ηφz3 � νφz1 + (1 − ν)φz2 , (5)

where we have set a1 + a2 = 2 and used the substitutions
2ν = a1 and 2η = a3. Also note that ηφz3 � νφz1 + (1 − ν)φz2

implies that there exists z4 ∈ K such that

νz1 + (1 − ν)z2 = ηz3 + (1 − η)z4.

V. MAXIMALLY INCOMPATIBLE TWO-OUTCOME
MEASUREMENTS

In this section we find necessary and sufficient conditions
for the existence of maximally incompatible measurements mf

and mg on a given state space K . A sufficient condition was

proved in [5]: A pair of maximally incompatible two-outcome
measurements exists if K is the square state space of Example
1 or, more generally, there are two pairs of parallel hyperplanes
tangent to K such that the corresponding exposed faces contain
the edges of a square. Besides the square, such state spaces
include the cube, pyramid, double pyramid, cylinder, etc.
We will show that this condition is also necessary so that
it characterizes state spaces admitting a pair of maximally
incompatible two-outcome measurements.

The following notation will be used throughout:

F0 = {z ∈ K : f (z) = 0},
F1 = {z ∈ K : f (z) = 1},
G0 = {z ∈ K : g(z) = 0},
G1 = {z ∈ K : g(z) = 1}.

We begin by rephrasing the above sufficient condition. For
completeness, we add a proof along the lines of [5].

Proposition 3. Assume there are some points x00 ∈ F0 ∩
G0, x10 ∈ F1 ∩ G0, x01 ∈ F0 ∩ G1, and x11 ∈ F1 ∩ G1 such
that

1
2 (x00 + x11) = 1

2 (x10 + x01).

Then DegCom(mf ,mg) = 1
2 .

Proof. Let p be any positive affine function on K . Then we
have

p(x11) + p(x00) = p(x10) + p(x01)

and

p(x11) � p(x10) + p(x01)

follows. Let τ1 = μ1δω1 + (1 − μ1)δω2 and τ2 = μ2δω1 + (1 −
μ2)δω2 be coin-toss measurements. Then the conditions (1)–(3)
for λmf + (1 − λ)τ1 and λmg + (1 − λ)τ2 take the form

λf + (1 − λ)μ1 � p,

λg + (1 − λ)μ2 � p,

1 + p � λ(f + g) + (1 − λ)(μ1 + μ2).

Expressing some of these conditions at the points x10,x01,x11,
we get

1 + p(x11) � 2λ + (1 − λ)(μ1 + μ2), (6)

(1 − λ)μ1 � p(x01), (7)

(1 − λ)μ2 � p(x10). (8)

From (6) we obtain

2λ � 1 + p(x11) − (1 − λ)(μ1 + μ2)

and since from (7) and (8) we have

p(x11) � p(x10) + p(x01) � (1 − λ)(μ1 + μ2),

it follows that λ � 1
2 . �

At this point we can demonstrate that maximally incom-
patible two-outcome measurements exist for the set C(H) of
quantum channels (see Example 2).

Example 3. Let K = C(H), with dim(H) = 2. Let |0〉,|1〉
be an orthonormal basis of H and let M,N ∈ Bh(H ⊗ H) be
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given as

M = |0〉〈0| ⊗ |0〉〈0|,
N = |0〉〈0| ⊗ |1〉〈1|.

Then 0 � M � 1⊗ |0〉〈0| and 0 � N � 1⊗ |1〉〈1|, so
f (C) = Tr CM and g(C) = Tr CN define effects on C(H).
Let

C00 = |1〉〈1| ⊗ 1,

C10 = |0〉〈0| ⊗ |0〉〈0| + |1〉〈1| ⊗ |1〉〈1|,
C01 = |0〉〈0| ⊗ |1〉〈1| + |1〉〈1| ⊗ |0〉〈0|,
C11 = |0〉〈0| ⊗ 1.

It is easy to check that C00,C10,C01,C11 ∈ C(H). Moreover,

C00 + C11 = 1⊗ 1 = C10 + C01

and

Tr(C00M) = Tr(C00N ) = 0,

Tr(C10M) = 1, Tr(C10N ) = 0,

Tr(C01M) = 0, Tr(C01N ) = 1,

Tr(C11M) = Tr(C11N ) = 1.

In conclusion, C00, C10, C01, and C11 satisfy the properties
in Proposition 3, so the two-outcome measurements mf and
mg are maximally incompatible. An analogical fact was also
observed in [1,8] in different circumstances.

We proceed to prove some necessary conditions.
Proposition 4. DegCom(mf ,mg) = 1

2 only if

F0 ∩ G0 	= ∅,

F0 ∩ G1 	= ∅,

F1 ∩ G0 	= ∅,

F1 ∩ G1 	= ∅.

Proof. Let F1 ∩ G1 = ∅. Then f + g < 2. Let τ = δω2

and consider the measurements λmf + (1 − λ)τ = mλf and
λmg + (1 − λ)τ = mλg , λ ∈ [0,1]. Since f + g < 2, we can
choose λ > 1

2 such that 1 � λ(f + g), so p = 0 satisfies
Eqs. (1)–(3) for mλf and mλg .

The result for the other sets follows by using Corollary 1.�
The conditions given by Proposition 4 are not sufficient, as

we will demonstrate in the following example.
Example 4. Let K be a simplex with vertices x1,x2,x3,x4

and let b1,b2,b3,b4 denote positive affine functions such that

bi(xj ) = δij .

Such functions exist because K is a simplex. Let

f = b1 + b2, g = b1 + b3.

Then we have

F1 ∩ G1 = {x1},
F1 ∩ G0 = {x2},
F0 ∩ G1 = {x3},
F0 ∩ G0 = {x4},

but clearly the measurements mf and mg must be compatible
as K is a simplex. As a matter of fact, Eqs. (1)–(3) are satisfied
with p = b1.

Proposition 5. DegCom(mf ,mg) = 1
2 if and only if there

exist points x00,x01,x10,x11 such that x00 ∈ F0 ∩ G0, x10 ∈
F1 ∩ G0, x01 ∈ F0 ∩ G1, x11 ∈ F1 ∩ G1, and

1
2 (x00 + x11) = 1

2 (x10 + x01).

Proof. The “if” part is proved in Proposition 3. Conversely,
if DegCom(mf ,mg) = 1

2 then according to the results of
Sec. IV, the supremum in (5) must be equal to 1, so we must
have

η[f (z3) + g(z3) − 1] − νf (z1) − (1 − ν)g(z2) = 1
2 (9)

for some η,ν ∈ [0,1] and z1,z2,z3 ∈ K such that

νφz1 + (1 − ν)φz2 � ηφz3 .

It follows that

νφz1 � ηφz3 − (1 − ν)φz2 , (10)

(1 − ν)φz2 � ηφz3 − νφz1 . (11)

Rewriting Eq. (9) we get

〈ηφz3 − νφz1 ,f 〉 + 〈ηφz3 − (1 − ν)φz2 ,g〉 − η = 1
2 .

We clearly have 〈ηφz3 − νφz1 ,f 〉 � η, but Eq. (11) implies
〈ηφz3 − νφz1 ,f 〉 � 1 − ν and thus we must have 〈ηφz3 −
νφz1 ,f 〉 � min(η,1 − ν). Similarly, we get 〈ηφz3 − (1 −
ν)φz2 ,g〉 � min(η,ν) and
1
2 � min(η,ν) + min(η,1 − ν) − η = min(ν,1 − ν,η,1 − η),

which implies ν = η = 1
2 . Moreover, there must be some z4 ∈

K such that
1
2 (z1 + z2) = 1

2 (z3 + z4). (12)

Equation (9) now becomes

f (z3) + g(z3) − f (z1) − g(z2) = 2,

which implies f (z3) = g(z3) = 1 and f (z1) = g(z2) = 0 as
f,g ∈ E(K). From Eq. (12) we get

f (z2) = 1 + f (z4),

which implies f (z2) = 1, f (z4) = 0, and

g(z1) = 1 + g(z4),

which implies g(z1) = 1 and g(z4) = 0. Together we get

z3 ∈ F1 ∩ G1,

z2 ∈ F1 ∩ G0,

z1 ∈ F0 ∩ G1,

z4 ∈ F0 ∩ G0.

�
We now give a characterization of state spaces admitting a

pair of maximally incompatible two-outcome measurements.
Theorem 1. Let K be a state space. A pair of maximally

incompatible two-outcome measurements on K exists if and
only if K contains a square (as defined in Example 1) whose
opposite edges lie in parallel exposed faces of K . The effects
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FIG. 1. State space K used in Example 5.

determining these exposed faces then constitute the pair of
maximally incompatible measurements.

Proof. Let mf and mg be maximally incompatible. Then
F0,F1 and G0,G1 are parallel exposed faces that contain
the edges of a square by Proposition 5. Conversely, assume
that the condition holds. Let x00,x01,x10,x11 ∈ K be the
vertices of the square and let F0,F1 and G0,G1 be pairs
of parallel exposed faces containing the opposite edges,
so that xij ∈ Fi ∩ Gj , i,j ∈ {1,2}. Then there are some
f,g ∈ E(K) such that F0 = f −1(0),F1 = f −1(1) and G0 =
g−1(0),G1 = g−1(1). By Proposition 3, mf and mg are
maximally incompatible. �

In the remainder of this section, we aim to give some
geometric insight into the above condition.

Corollary 2. Let K be a state space. If dim (aff(K)) =
2, then maximally incompatible two-outcome measurements
exist on K if and only if K is a square. In general, such
measurements exist only if there is an affine subspace V ⊂
aff(K), dim(V ) = 2, such that S = V ∩ K is a square.

Proof. The first statement is immediate from Theorem 1.
The principal idea for the second statement is that V = aff(S),
where S is the square in question. Let us assume that there
exist maximally incompatible measurements mf and mg on
K and let S be the square as in Theorem 1, with vertices
x00,x01,x10,x11. Let V = aff(x00,x10,x01) and let F0,F1 and
G0,G1 be the parallel exposed faces of K , containing the
edges of S. It is easy to see that Fi ∩ V and Gi ∩ V are faces
of K ∩ V and they coincide with the edges of S. It is now
obvious that S = V ∩ K . �

We will present an example to show that the condition in
Corollary 2 is not sufficient, even if the square V ∩ K is an
exposed face of K .

Example 5. Let K ⊂ R3 be defined as

K = conv{(0,0,0),(2,0,0),(0,2,0),(2,1,0),(1,2,0),(1,1,1),

× (1,0,1),(0,1,1),(0,0,1)}
(see Fig. 1). Let

V = {(x1,x2,x3) ∈ R3 : x3 = 1}.

Then K ∩ V = S, where

S = conv{(1,1,1),(1,0,1),(0,1,1),(0,0,1)}
is an exposed face and a square.

To see that there is not a pair of maximally incompatible
measurements mf and mg , corresponding to S, it is enough to
realize that the effects f and g would have to reach the values
0 and 1 on maximal faces that are not parallel, i.e., we would
have to have aff(F0) ∩ aff(F1) 	= ∅ and aff(G0) ∩ aff(G1) 	=
∅, which is impossible. On the other hand, the examples
of a double pyramid or a cylinder show that maximally
incompatible two-outcome measurements may exist on K even
if the square V ∩ K described in Corollary 2 is not a face
of K .

VI. DISCRIMINATION MEASUREMENTS

We now introduce a type of measurement that will allow
us to formulate the conditions for existence of maximally
incompatible two-outcome measurements in a clearer way.

Definition 6. We say that a two-outcome measurement mf

discriminates the sets E0,E1 ⊂ K if

E0 ⊂ f −1(0), E1 ⊂ f −1(1).

We call such measurement a discrimination measurement.
The idea of the definition is simple: Assume that a system

is in an unknown state, but we know that it belongs to either
E0 or E1. By performing the discrimination measurement
mf we can tell with 100% accuracy whether the state of the
system belongs to E0 or E1. Clearly, mf is a discrimination
measurement if and only if both f −1(0) and f −1(1) are
nonempty.

The definition can be generalized in an obvious way to
general measurements that can discriminate more than two
sets. The most well-known discrimination measurements used
in quantum mechanics are projective measurements consisting
of rank-1 projections that discriminate the states corresponding
to the projections.

We are ready to reformulate the necessary and sufficient
condition for maximal incompatibility of two-outcome mea-
surements.

Proposition 6. The measurements mf and mg are maximally
incompatible if and only if there is a square S ⊆ K such that
mf and mg discriminate the opposite edges of S.

Proof. First assume that there is a square S whose opposite
edges can be discriminated by measurements mf and mg .
Denote the vertices of S by x00, x10, x01, and x11. Then it is
clear that the requirements of Proposition 3 are satisfied and
thus we must have DegCom(mf ,mg) = 1

2 .
Conversely, assume that DegCom(mf ,mg) = 1

2 . Then by
Proposition 5 there is a square S with vertices x00, x10, x01,
and x11 such that xi0,xi1 ∈ Fi and x0j ,x1j ∈ Gj , i,j ∈ {0,1}.
By convexity, mf discriminates the edges between x00,x01 and
x10,x11 and similarly mg discriminates the other parallel pair.�

We finish with a necessary condition for compatibility of
two-outcome discrimination measurements. Assume that mf

and mg are such that Fi ∩ Gj 	= ∅ (obviously, mf and mg are
discrimination measurements in this case) and let xij ∈ Fi ∩
Gj , i,j ∈ {0,1}. Assume also that mf and mg are compatible,
so that (1)–(3) hold. Inserting x11 ∈ F1 ∩ G1 into Eq. (3),
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we get

p(x11) � 1,

which together with p ∈ E(K) implies p(x11) = 1. Equations
(1) and (2) and the positivity of p imply

p(x00) = p(x10) = p(x01) = 0.

Expressing also the functions (f − p), (g − p), and (1 + p −
f − g) on the points x00, x10, x01, and x11, we get

(f − p)(x00) = (f − p)(x01) = (f − p)(x11) = 0,

(f − p)(x10) = 1,

(g − p)(x00) = (g − p)(x10) = (g − p)(x11) = 0,

(g − p)(x01) = 1,

(1 + p − f − g)(x00) = (1 + p − f − g)(x10) = 0,

(1 + p − f − g)(x01) = 0,

(1 + p − f − g)(x11) = 1.

This shows that the joint measurement m given by (4)
discriminates the points x00, x10, x01, and x11. In particular,
this implies that these points must be affinely independent. We
have proved the following.

Proposition 7. Let mf and mg be compatible discrimination
measurements such that Fi ∩ Gj 	= ∅ for all i,j ∈ {0,1}. Then
any joint measurement of mf and mg must discriminate Fi ∩
Gj .

VII. CONCLUSION

We have shown that the existence of maximally incom-
patible two-outcome measurements in GPT is equivalent to
a geometric condition on the state space K . The essence of
this condition is covered by the example of square state space
in [5]. The importance of this result lies in its connection
to maximal violation of Bell’s inequalities and therefore to
possible realizations of Popescu-Rorlich boxes [18], which
are studied as potentially powerful resources in information
theory. The example of the state space C(H) (Example 3)
is particularly interesting in this respect, since it shows that
maximal incompatibility can be achieved by devices existing
in quantum theory.

The geometric interpretation of the minimal degree of
compatibility that can be attained on a state space K is an
interesting question for future research. It would be also of
interest whether the connection between discriminating certain
sets and compatibility of measurements could be fruitful
from an information-theoretic viewpoint. This area of research
might also yield some insight into why there exist maximally
incompatible measurements on quantum channels although
they do not exist on quantum states.
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We derive general conditions for the compatibility of channels in general probabilistic theory. We introduce
formalism that allows us to easily formulate steering by channels and Bell nonlocality of channels as
generalizations of the well-known concepts of steering by measurements and Bell nonlocality of measurements.
The generalization does not follow the standard line of thinking stemming from the Einstein-Podolsky-Rosen
paradox, but introduces steering and Bell nonlocality as entanglement-assisted incompatibility tests. We show that
all of the proposed definitions are, in the special case of measurements, the same as the standard definitions, but not
all of the known results for measurements generalize to channels. For example, we show that for quantum channels,
steering is not a necessary condition for Bell nonlocality. We further investigate the introduced conditions and
concepts in the special case of quantum theory and we provide many examples to demonstrate these concepts
and their implications.
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I. INTRODUCTION

Incompatibility of measurements is the well-known quan-
tum phenomenon that gives rise to steering and Bell nonlo-
cality. Historically, the idea of measurement incompatibility
dates back to Bohr’s principle of complementarity. Steering
was first described by Schrödinger [1] and Bell nonlocality
was first introduced by Bell [2], both as a reply to the paradox
of Einstein, Podolsky, and Rosen (EPR) [3]. It is known that
incompatibility of measurements is necessary and in some
cases sufficient for both steering and Bell nonlocality, but the
operational connection between incompatibility, steering, and
Bell nonlocality was so far not described in general terms that
would also fit channels, not only measurements.

There was extensive research into properties of quantum
incompatibility of measurements [4,5], quantum incompati-
bility of measurements and its noise robustness, or degree
of compatibility [6,7], connection of quantum incompatibility
of measurements and steering [8–12], connection of quantum
incompatibility of measurements and Bell nonlocality [13–16],
and connection between steering and Bell nonlocality [17,18]
(for a recent review, see [19]). In recent years, the problems
of incompatibility of measurements on channels [20], com-
patibility of channels [21], the connection of channel steering
to measurement incompatibility [22], and incompatibility in
general probabilistic theory [23–26] were all studied.

The aim of this paper is to heavily generalize the re-
cent results of [26], where compatibility, steering, and Bell
nonlocality of measurements were formulated using convex
analysis and the geometry of tensor products. In this paper,
we will generalize the ideas and results of [26] for the
case of two channels in general probabilistic theory. The
generalizations are not straightforward and we will have to
introduce several operational ideas and definitions, e.g., we
introduce the operational interpretation of direct products of
state spaces and we define steering and Bell nonlocality as
very simple entanglement-assisted incompatibility test, that

*martin.plavala@mat.savba.sk

boil down to the problem whether there exists a multipartite
state with given marginal states.

During all of our calculations we will restrict ourselves to
finite-dimensional general probabilistic theory and to only the
case of two channels. We will restrict to only two channels
just for simplicity, as one may easily formulate many of our
results for more than two channels using the same operational
ideas as we will present.

The paper is organized as follows: In Sec. II we describe our
motivation for using general probabilistic theory. We provide
several references to known applications and their connections
to each other. In Sec. III we introduce general probabilistic
theory. Note that in Sec. III D we introduce the operational
interpretations of direct products in general probabilistic
theory. In Sec. IV we define compatibility of channels and we
derive a condition for compatibility of channels. In Sec. V we
show that our condition for compatibility of channels yields
the condition for compatibility of measurements that was
presented in Ref. [26]. In Sec. VI we derive specific conditions
for the compatibility of quantum channels. In Sec. VII we
propose an idea for a test of incompatibility of channels, that
will not work at first, but will eventually lead to both steering
and Bell nonlocality. In Sec. VIII we define steering by
channels as one-sided entanglement assisted incompatibility
test and we derive some basic results. In Sec. IX we show
that for the special case of measurements our definition of
steering leads to the standard definition of steering [27] in the
formalism of [26]. In Sec. X we derive the specific conditions
for steering by quantum channels, we show that every pair of
incompatible channels may be used for steering of maximally
entangled state, and that there are entangled states that are
not steerable by any pair of channels, among other results. In
Sec. XI we define Bell nonlocality of channels as a two-sided
entanglement assisted incompatibility test and we derive some
basic results. Then, in Sec. XII we show that, when applied to
measurement, the general definition of Bell nonlocality yields
the standard definition of Bell nonlocality [27] in the formalism
of [26], and we also show that for measurements steering is a
necessary condition for Bell nonlocality. In Sec. XIII we derive
conditions for the Bell nonlocality of quantum channels, we
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formulate a generalized version of the Clauser-Horne-
Shimony-Holt (CHSH) inequality, we show that for such
inequality Tsirelson bound [28] both holds and is reached, we
show an example of violation of the generalized version of
CHSH inequality, and we build on the example from Sec. X
of an entangled state not steerable by any pair of channels
to show that, even though the state is not steerable by any
pair of channels, it leads to Bell nonlocality, which shows
that steering is not a necessary condition for Bell nonlocality
for quantum channels. In Sec. XIV we conclude the paper
by presenting the many open questions and possible areas of
research opened by our paper.

II. MOTIVATIONS FOR USING GENERAL
PROBABILISTIC THEORY

There are few motivations to using general probabilistic
theory. The first motivation is mathematical as general prob-
abilistic theory is a unified framework capable of describing
both classical and quantum theory, as well as other theories.
In this paper, the mathematical motivation is (according to
the personal opinion of the author) even stronger as some
of the formulations of the presented ideas and some of the
proofs of the presented theorems turn out to be clearer in
the framework of general probabilistic theory. The second
motivation comes from foundations of quantum theory as
general probabilistic theory provides insight into the structure
of entanglement and incompatibility. The third and most
promising motivation comes from information theory. There
were developed several models [29–31] that have very interest-
ing information-theoretic properties and that can be described
by general probabilistic theory, albeit sometimes it needs to be
extended even more [32]. Apart from the well-known results
on the properties of Popescu-Rohrlich boxes [33,34], it was
showed that there are theories in which one can search an
N -item database in O( 3

√
N ) queries [35] and that there is

a general probabilistic theory that can be simulated by a
probabilistic classical computer that can perform Deutsch-
Jozsa and Simon’s algorithm [36].

The aforementioned results show that studying general
probabilistic theory is interesting even from a practical
viewpoint and that it could have potential applications in
information processing.

III. INTRODUCTION TO GENERAL
PROBABILISTIC THEORY

General probabilistic theory is a unified framework to
describe the kinematics of different systems in a mathe-
matically unified fashion. The idea of general probabilistic
theory is an operational approach to setting the axioms and
then carrying forward using convex analysis. Useful books on
convex analysis are [37,38]. The beautiful aspect of general
probabilistic theory is that it is only little bit more general than
dealing with the different systems on their own, but we do not
have to basically rewrite the same calculations over and over
again for different theories.

During our calculations, we will use two recurring ex-
amples: one will be finite-dimensional classical theory and
the other will be finite-dimensional quantum theory. The

finite-dimensional classical theory is closely tied to the known
results about incompatibility, steering, and Bell nonlocality
of measurements and we will mainly use it to verify that
the definitions we will propose are, in the special case
of measurements, the same as the known definitions. The
quantum theory is our main concern as this is the theory we are
mostly interested in. Some results, that we will only prove for
quantum theory, may be generalized for general probabilistic
theory, but we will limit the generality of our calculations to
make them more understandable to readers that are not so far
familiar with general probabilistic theory.

Given that we will work with many different spaces, their
duals, their tensor products, and many isomorphic sets, all iso-
morphisms will be omitted unless explicitly stated otherwise.

A. State space and the effect algebra of general
probabilistic theory

There are two central notions in general probabilistic the-
ory: the state space that describes all possible states of the sys-
tem and the effect algebra that describes the measurements on
the system. We will begin our construction from the state space
and then define the effect algebra, but we will show how one
can go the other way and start from an effect algebra and obtain
state space afterwards. We will restrict ourselves to finite-
dimensional spaces and always use the Euclidean topology.

Let V denote a real, finite-dimensional vector space and let
X ⊂ V , then by conv(X) we will denote the convex hull of X,
by aff(X) we will denote the affine hull of X. We will proceed
with the definition of relative interior of a set X ⊂ V .

Definition 1. Let X ⊂ V , then the relative interior of X,
denoted ri(X) is the interior of X when it is considered as a
subset of aff(X).

For a more thorough discussion of relative interior,
see [37, p. 44].

Let K be a compact convex subset of V , then K is a state
space. The points x ∈ K represent the states of some system
and their convex combination is interpreted operationally,
that is, for x,y ∈ K, λ ∈ [0,1] ⊂ R the state λx + (1 − λ)y
corresponds to having prepared x with probability λ and y

with probability 1 − λ.
To define measurements, we have to be able to assign proba-

bilities to states, that is, we have to have a map f : K → [0,1]
such that, to follow the operational interpretation of convex
combination, we have assigned the convex combination of
probabilities to the convex combination of respective states. In
other words, for x,y ∈ K, λ ∈ [0,1] we have

f (λx + (1 − λ)y) = λf (x) + (1 − λ)f (y),

which means that f is an affine function. Such functions are
called effects because they correspond to assigning probabili-
ties of measurement outcomes to states. We will proceed with
a more formal definition of effects and of effect algebra.

Let A(K) denote the set of affine functions K → R. A(K)
is itself a real linear space, moreover it is ordered as follows:
let f,g ∈ A(K), then f � g if f (x) � g(x) for every x ∈ K .
There are two special functions 0 and 1 in A(K), such that
0(x) = 0 and 1(x) = 1 for all x ∈ K .

The set A(K)+ = {f ∈ A(K) : f � 0} is the convex,
closed cone of positive functions. The cone A(K)+ is
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generating, that is, for every f ∈ A(K) we have f+,f− ∈
A(K)+ such that f = f+ − f−, and it is pointed, that is, if
f � 0 and −f � 0, then f = 0.

Although we will provide a proper definition of
measurement in Sec. III E, we will now introduce the concept
of yes or no measurement, or two-outcome measurement,
that will motivate the definition of the effect algebra. Our
notion of measurement might seem different to the standard
understanding and one may argue that what we will refer to as
measurements should be called entanglement-breaking maps,
but this way of defining measurement is standard in general
probabilistic theory, hence, we will use it. A measurement is
a procedure that assigns probabilities to possible outcomes
based on the state that is measured. If we have only two
outcomes and we know that the probability of the first
outcome is p ∈ [0,1], then, by normalization, the probability
of the second outcome must be 1 − p. This shows that a
two-outcome measurement needs to assign only probability
to one outcome and the other probability follows.

Since assigning probabilities to states is a function f :
K → [0,1] and due to our operational interpretation of convex
combination we want such function to be affine. Traditionally,
the functions that assign probabilities to states are called effects
and the set of all effects is called effect algebra.

Definition 2. The set E(K) = {f ∈ A(K) : 0 � f � 1} is
called the effect algebra.

In general, one may define effect algebra in more general
fashion, using the partially defined operation of addition and
a unary operation ⊥, that would in our case correspond to
f ⊥ = 1 − f (see [39] for a more thorough treatment).

Let f ∈ E(K), then the two-outcome measurement mf

corresponding to the effect f is the procedure that for x ∈ K

assigns the probability f (x) to the first outcome and the
probability 1 − f (x) to the second outcome. Note that we did
not mention any labels of the outcomes. Usually, the outcomes
are labeled yes and no, or 0 and 1, or −1 and 1, but from an
operational perspective this does not matter.

We provide two standard examples of special cases of our
definitions.

Example 1 (Classical theory). In classical theory, the state
space K is a simplex, that is the convex hull of a set of affinely
independent points x1, . . . ,xn. The special property of the
simplex is that every point x ∈ K can be uniquely expressed
as convex combination of the points x1, . . . ,xn, due to their
affine independence.

Example 2 (Quantum theory). Let H denote a finite-
dimensional complex Hilbert space, let Bh(H) denote the real
linear space of self-adjoint operators on H, for A ∈ Bh(H)
let Tr(A) denote the trace of the operator A, and let A � 0
denote that A is positive semidefinite. We say that A � B if
0 � B − A. Let Bh(H)+ = {A ∈ Bh(H) : A � 0} denote the
cone of positive-semidefinite operators.

In quantum theory the state space is given as

DH = {ρ ∈ Bh(H) : ρ � 0,Tr(ρ) = 1}

which is the set of density operators on H. The effect algebra
E(DH) is given as

E(DH) = {M ∈ Bh(H) : 0 � M � 1}.

The value of the effect M ∈ E(DH) on the state ρ ∈ DH is
given as

M(ρ) = Tr(ρM).

B. Structure of general probabilistic theory

This section will be rather technical, but we will introduce
several mathematical results that we will use later on.

Let x ∈ K and consider the map x : A(K) → R, that to f ∈
A(K) assigns the value f (x). This is clearly a linear functional
on A(K). Moreover for x,y ∈ K, λ ∈ [0,1] we have

λx + (1 − λ)y = λx + (1 − λ)y

as the functions in A(K) are affine by definition. We conclude
that the state space K must be affinely isomorphic to some
subset of the dual of A(K). Since the aforementioned isomor-
phism is going to be extremely useful in later calculations,
we will describe it in more detail. Let A(K)∗ denote the
dual of A(K), that is, the space of all linear functionals on
A(K). For ψ ∈ A(K)∗ and f ∈ A(K) we will denote the
value the functional ψ reaches on f as 〈ψ,f 〉. The dual
cone to A(K)+ is the cone A(K)∗+ = {ψ ∈ A(K)∗ : 〈ψ,f 〉 �
0, ∀ f ∈ A(K)+} that gives rise to the ordering on A(K)∗
given as follows: let ψ,ϕ ∈ A(K)∗, then ψ � ϕ if and only if
(ψ − ϕ) ∈ A(K)∗+, i.e., if ψ − ϕ � 0.

It is straightforward that the state space K is isomorphic to
a subset of the cone A(K)∗+, moreover, it is straightforward
to realize that the functionals isomorphic to K must map the
function 1 ∈ A(K) to the value 1.

Definition 3. Let SK = {ψ ∈ A(K)∗+ : 〈ψ,1〉 = 1}. We
call SK the state space of the effect algebra E(K).

It might be confusing at this point why we call SK a state
space, but this will be cleared by the following.

Proposition 1. SK is affinely isomorphic to K .
Proof. It is clear that the map x → x maps K to a convex

subset of SK . It is easy to show the inclusion of SK in the
image of K using Hahn-Banach separation theorem (see [40,
Chap. 1, Theorem 4.3] for a proof). �

We will omit the isomorphism between K and SK , so
for any x,y ∈ K,α ∈ R we will write αx + y instead of
αx + y ∈ A(K)∗. Still, one must be careful when omitting
this isomorphism because if 0 ∈ V denotes the zero vector
and 0 ∈ K , then 0 ∈ A(K)∗ is not the zero functional as by
construction we have 〈0,1〉 = 1. We will do our best to avoid
such possible problems by choosing appropriate notation.

There are two more results we will heavily rely on:
Proposition 2. SK is a base of A(K)∗+, that is, for every

ψ ∈ A(K)∗+, ψ �= 0, there is a unique x ∈ K and λ ∈ R, λ �
0, such that ψ = λx.

Proof. Let ψ ∈ A(K)∗+, ψ �= 0, then 〈ψ,1〉 �= 0 as if
〈ψ,1〉 = 0 and ψ � 0, then ψ = 0, because 1 ∈ ri(A(K)+).
Let ψ ′ = 1

〈ψ,1〉ψ . It is straightforward that ψ ′ ∈ SK . �
Proposition 3. A(K)∗+ is a generating cone in A(K)∗, that

is, for every ψ ∈ A(K) there are ϕ+,ϕ− ∈ A(K)∗+ such that
ψ = ϕ+ − ϕ−.

Proof. The result follows from the fact that A(K)+ is a
pointed cone (see [38, Sec. 2.6.1]). �
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C. Tensor products of state spaces and effect algebras

Tensor products are a way to describe joint systems
of several other systems. There are several approaches to
introducing a tensor product in general probabilistic theory.
There is a category theory based approach [41] that is a
viable way to introduce the tensor products, but we will use
a simpler, operational approach. Note that the state space of
the joint system will be a compact convex subset of a real,
finite-dimensional vector space as it itself must be a state
space of some general probabilistic theory. Also, keep in
mind that describing a tensor product of state spaces KA,KB

is equivalent to describing the tensor product of the cones
A(KA)∗+, A(KB)∗+. This is going to be useful as some things
are easier to express in terms of the positive cones.

Let V,W be real finite-dimensional vector spaces and let
v ∈ V,w ∈ W . v ⊗ w will refer to the element of the algebraic
tensor product V ⊗ W (see, e.g., [42]). We will first describe
the minimal and maximal tensor products of state spaces that
set bounds on the real state space of the joint system. Note that
when describing the joint state space of two state spaces or
states of two systems, we will refer to them as bipartite state
space or bipartite states.

Let KA,KB denote two state spaces of Alice and Bob,
respectively. For every xA ∈ KA, xB ∈ KB there must be a
state of the joint system describing the situation that Alice’s
system is in the state xA and Bob’s system is in the state xB .
We will denote such state xA ⊗ xB and we will call it a product
state. Since the state space must be convex, the state space of
the joint system must contain at least the convex hull of the
product states. This leads to the definition of minimal tensor
product.

Definition 4. The minimal tensor product of state spaces
KA and KB , denoted KA⊗̇KB , is the compact convex set

KA⊗̇KB = conv({xA ⊗ xB : xA ∈ KA,xB ∈ KB}).
The bipartite states y ∈ KA⊗̇KB are also called separable

states. For the positive cones we get

A(KA⊗̇KB)∗+

= conv({ψA ⊗ ψB : ψA ∈ A(KA)∗+,ψB ∈ A(KB)∗+}).
Example 3. In quantum theory, the minimal tensor product

DH⊗̇DH is the set of all separable states, that is, of all states
of the form

∑n
i=1 λiρi ⊗ σi for n ∈ N and ρi ∈ DH, σi ∈

DH, 0 � λi for i ∈ {1, . . . ,n}, ∑n
i=1 λi = 1.

In a similar fashion, let fA ∈ E(KA), fB ∈ E(KB), then
we can define a function fA ⊗ fB as the unique affine function
such that for xA ∈ KA, xB ∈ KB we have

(fA ⊗ fB)(xA ⊗ xB) = fA(xA)fB(xB).

This function is used in the most simple measurement on the
joint system, such that Alice applies the two-outcome mea-
surement mfA

and Bob applies the two-outcome measurement
mfB

, so fA ⊗ fB must be an effect on the joint state space.
This leads to the definition of the maximal tensor product.

Definition 5. The maximal tensor product of the state
spaces KA and KB , denoted KA⊗̂KB , is defined as

KA⊗̂KB = {ψ ∈ A(KA)∗ ⊗ A(KB)∗ : ∀ fA ∈ A(KA)+,

∀ fB ∈ A(KB)+,〈ψ,fA ⊗ fB〉 � 0}.

States in KA⊗̂KB \ KA⊗̇KB are called entangled states.
Equivalent definition, in terms of the positive cones, would be

A(KA⊗̂KB)∗+ = (A(KA)+⊗̇A(KB)+)∗+,

where

A(KA)+⊗̇A(KB)+

= conv({fA ⊗ fB : fA ∈ A(KA)+,fB ∈ A(KB)+}).
As we see, the definition of tensor product of cones of positive
functionals goes hand in hand with the definition of tensor
product of cones of positive functions.

Example 4. In quantum theory, the maximal tensor product
of the cones Bh(H)+⊗̂Bh(H)+ is the cone of entanglement
witnesses [43, Sec. 6.3.1], i.e., W ∈ Bh(H)+⊗̂Bh(H)+ if for
every ρ ∈ DH, σ ∈ DH we have Tr(Wρ ⊗ σ ) � 0. Note that
this does not imply the positivity of W .

From the constructions it is clear that the state space of the
joint system has to be a subset of the maximal tensor product
and it has to contain the minimal tensor product. But, there is no
other specification of the state space of the joint system in gen-
eral; it has to be provided by the theory we are working with.

Definition 6. We will call the joint state space of the
systems described by the state spaces KA and KB the real
tensor product of KA and KB and we will denote it KA⊗̃KB .
We always have

KA⊗̇KB ⊆ KA⊗̃KB ⊆ KA⊗̂KB.

Example 5. In quantum theory, the real tensor product of
the state spaces is defined as the set of density matrices on the
tensor product of the Hilbert spaces, that is,

DH⊗̃DH = DH⊗H.

It is tricky to work with the tensor products in general
probabilistic theory as the real tensor product is not always
specified, or it may not be clear what it should be. We will
always assume that every tensor product we need to be defined
is defined. Moreover, when working with a tensor product of
more than two state spaces, say KA,KB,KC , we will always
assume that

(KA⊗̃KB)⊗̃KC = KA⊗̃(KB⊗̃KC)

and we will simply write KA⊗̃KB⊗̃KC . In the applications of
general probabilistic theory to quantum and classical theory
it will always be clear how to construct the needed tensor
products and we consider this sufficient for us since we are
mainly interested in the applications of our results.

We will state and prove a result about classical state spaces
that we will use several times later on.

Proposition 4. Let S be a simplex with the extremal points
x1, . . . ,xn, i.e., S = conv({x1, . . . ,xn}) and let K be any state
space, then we have

S⊗̇K = S⊗̂K.

Proof. Let S be a simplex and let xi ∈ A(S)∗+, i ∈
{1, . . . ,n}, be the extreme points of S. The points x1, . . . ,xn

form a basis of A(S)∗. Let ψ ∈ S⊗̂K , then we have

ψ =
n∑

i=1

xi ⊗ ϕi
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for some ϕi ∈ A(K)∗. Our aim is to prove that ϕi ∈ A(K)∗+,
then ψ ∈ S⊗̇K follows by definition.

Let b1, . . . ,bn denote the basis of A(S) dual to the basis
x1, . . . ,xn of A(S)∗, i.e., we have bi(xj ) = δij , where i,j ∈
{1, . . . ,n} and δij is the Kronecker delta. We have bi ∈ E(S)
because S is a simplex. For any f ∈ E(K) we have

0 � (ψ,bi ⊗ f ) = (ϕi,f )

for all i ∈ {1, . . . ,n}, which implies ϕi ∈ A(K)∗+. �
Note that tensor product of the simplexes S1, S2 is also a

simplex, so we have

K⊗̂S1⊗̂S2 = K⊗̇S1⊗̇S2.

D. Direct product of state spaces and effect algebras

For certain reasons, we will need to use direct products
together with tensor products. The idea of why they will be
used is going to be clear in the end, but now we will present
several of their properties that will be required later. As in
Sec. III C, we will work mostly with the cones of the positive
functionals.

Let KA,KB be two state spaces. Given A(KA)∗+ and
A(KB)∗+, there are two ways to define the direct product of
these cones. The first is to use the cone A(KA)∗+ × A(KB)∗+.
The second is to realize that we can construct KA × KB that
will be a compact and convex set, i.e., a state space that gives
rise to the cone A(KB1 × KB2 )∗+.

It may seem that these cones are fairly similar, but
they are not and they have different physical interpre-
tations. Let ψ ∈ A(KA × KB)∗+, then there are unique
λ ∈ R, xA ∈ KA, xB ∈ KB such that ψ = λ(xA,xB ). Now,
let ϕ ∈ A(KA)∗+ × A(KB)∗+, then there are yA ∈ KA, yB ∈
KB, αA,αB ∈ R, αA,αB � 0 such that ϕ = (αAyA,αByB). In
other words, the normalization may be different in every
component of the product. This can be rewritten as

ϕ = (αAyA,αByB)

= (αA + αB)

(
αA

αA + αB

yA,
αB

αA + αB

yB

)

= (αA + αB)

(
αA

αA + αB

(yA,0) + αB

αA + αB

(0,yB)

)

that shows that every element of A(KA)∗+ × A(KB)∗+ can
be uniquely expressed as a multiple of a convex combination
of elements of the form (yA,0) and (0,yB). The operational
interpretation of such states is that we do not even know which
system we are working with, but we know that with some
probability p we have the first system and with probability
1 − p we have the second system.

The operational interpretation of A(KA × KB)∗+ is a bit
harder to grasp. We may understand ψ ∈ A(KA × KB)∗+ as
a (multiple of) conditional state. That is, we will interpret the
object (xA,xB ) as a state that corresponds to making a choice
in the past between the systems KA and KB and keeping track
of both of the outcomes at once. The cone A(KA × KB)∗+ will
play a central role in our results on incompatibility, steering,
and Bell nonlocality because in the problem of incompatibility,
we wish to implement two channels at the same time, and in

steering and Bell nonlocality we are choosing between two
incompatible channels.

At last, we will need to describe the set A(KA × KB) and
its structure with respect to the sets A(KA) and A(KB). We
will show that A(KA × KB) corresponds to a certain subset of
A(KA) × A(KB) by using the following two ideas: since all of
the vector spaces are finite dimensional, we have that A(KA) ×
A(KB) is the dual to A(KA)∗ × A(KB)∗ and A(KA × KB)∗
can be identified with a subset of A(KA)∗ × A(KB)∗. Note
that this identification holds only between the vector spaces
and not between the corresponding state spaces.

Proposition 5. We have

A
(
KB1 × KB2

)∗+ ⊂ A
(
KB1

)∗+ × A
(
KB2

)∗+
.

Proof. The idea of the proof is that if we have ϕ ∈
A(KA)∗+ × A(KB)∗+ such that ϕ = (αAyA,αByB), then ϕ ∈
A(KA × KB)∗+ if and only if αA = αB . Therefore, we
can identify A(KA × KB)∗+ with the set {ψ ∈ A(KA)∗+ ×
A(KB)∗+ : 〈ψ,(1,−1)〉 = 0}. It is easy to verify this constraint
on the positive cones and since it is linear it must hold
everywhere else. �

The above proof shows that the function (1,−1) ∈ A(KA) ×
A(KB) is equal to zero when restricted to A(KA × KB)∗ or, in
other words, (1,0) = (0,1) when restricted to A(KA × KB)∗.
We introduce a relation of equivalence on A(KA) × A(KB) as
follows: for f,g ∈ A(KA) × A(KB) we say that f and g are
equivalent and we write f ∼ g if f − g = k(1,−1) for some
k ∈ R. Equivalently, f ∼ g if for every ψ ∈ A(KA × KB)∗
we have 〈ψ,f 〉 = 〈ψ,g〉. A(KA × KB) corresponds to the set
of equivalence classes of A(KA) × A(KB) with respect to the
relation of equivalence ∼.

To demonstrate this, consider the constant function 1 ∈
E(KA × KB) and let x ∈ KA, y ∈ KB , then we have

〈(x,y),(1,0)〉 = 〈x,1〉 = 1 = 〈(x,y),1〉,
〈(x,y),(0,1)〉 = 〈y,1〉 = 1 = 〈(x,y),1〉.

This is not a coincidence because (1,0) − (0,1) = (1,−1), so
we have (1,0) ∼ (0,1).

E. Channels and measurements in general probabilistic theory

It is not easy to define channels in general probabilistic
theory as we would like all of the channels to be completely
positive. We will use the following definition:

Definition 7. Let KA,KB be state spaces, then channel 	

is a linear map

	 : A(KA)∗ → A(KB)∗

that is positive, i.e., for every ψ ∈ A(KA)∗+ we have 	(ψ) ∈
A(KB)∗+ and that for ψ ∈ KA we have 	(ψ) ∈ KB .

One may also require a channel to be completely positive,
that is, if KC is some state space such that we can define
KC⊗̃KA, then we can consider the map id ⊗ 	 : KC⊗̃KA →
KC⊗̂KB and require it to be positive. In the applications of
general probabilistic theory to classical and quantum theories,
we always know how to create joint systems of given two
systems, so in the examples we will always require complete
positivity of channels, but one still has to bear in mind that
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in the general case, complete positivity is not a well-defined
concept.

One can identify the channel 	 : A(KA)∗ → A(KB)∗ with
an element of A(KA) ⊗ A(KB)∗ as follows: let x ∈ KA and
f ∈ A(KB), then the expression 〈	(x),f 〉 gives rise to a
linear functional on A(KA)∗ ⊗ A(KB). This means that we
have 	 ∈ A(KA) ⊗ A(KB)∗, where we omit the isomorphism
between the channel and the functional. If we also consider
the positivity of the channel on the elements of the form
x ⊗ f ∈ KA⊗̇E(KB), we get

	 ∈ A(KA)+⊗̂A(KB)∗+.

This is a well-known construction that may be also used to
define the tensor product of linear spaces [42, Chap. 1.3].

There is one more construction with channels that will be
important in our formulation of compatibility of channels:
compositions with effect. Let 	 : KA → KB be a channel
and let f ∈ E(KB), then they give rise to an effect (f ◦ 	) ∈
E(KA) defined for xA ∈ KA as

〈xA,(f ◦ 	)〉 = 〈	(xA),f 〉.
By the same idea, we can define a map f ⊗ id : A(KB)∗ ⊗
A(KC)∗ → A(KC)∗ such that for xB ∈ KB and xC ∈ KC we
have (f ⊗ id)(xB ⊗ xC) = f (xB)xC and we extend the map
by linearity. Also, given a channel 	 : KA → KB⊗̃KC we
can compose the map f ⊗ id with the channel 	 to obtain
(f ⊗ id) ◦ 	′ : A(KA)∗ → A(KC)∗ such that the correspond-
ing functional on A(KA) ⊗ A(KC)∗ is for xA ∈ KA and g ∈
A(KC) given as

〈(f ⊗ id) ◦ 	,xA ⊗ g〉 = 〈	(xA),f ⊗ g〉.
Specifically, we will be interested in the expressions (1 ⊗ id) ◦
	 and (id ⊗ 1) ◦ 	. If 	 is a channel, then (1 ⊗ id) ◦ 	 and
(id ⊗ 1) ◦ 	 are channels as well and they are called marginal
channels of 	.

A special type of channel is a measurement.
Definition 8. A channel m : KA → KB is called a measure-

ment if KB is a simplex.
The interpretation is simple: the vertices of the simplex

correspond to the possible measurement outcomes and the
resulting state is a probability distribution over the measure-
ment outcomes, i.e., an assignment of probabilities to the
possible outcomes. Since we require all state spaces to be finite
dimensional, this implies that we consider only finite-outcome
measurements. Let KB be a simplex with vertices ω1, . . . ,ωn,
then we can identify a measurement m with an element of
A(KA)+⊗̇A(KB)∗+ of the form

m =
n∑

i=1

fi ⊗ δωi
,

where for i ∈ {1, . . . ,n} we have fi ∈ E(KA),
∑n

i=1 fi = 1
and δωi

∈ S(KB) are the functionals corresponding to the
extreme points of KB (where we have not omitted the
isomorphism this time). This expression has an operational
interpretation that for x ∈ KA the measurement m assigns the
probability fi(x) to the outcome ωi .

Example 6. Quantum channels are completely positive,
trace-preserving maps 	 : DH → DH. The complete positiv-

ity means that for any ρ � 0 we have (id ⊗ 	)(ρ) � 0. We
denote the set of channels 	 : DH → DH as CH→H.

Let |1〉, . . . ,|n〉 be an orthonormal base of H. To every
quantum channel we may assign its unique Choi matrix C(	)
defined as

C(	) = (	 ⊗ id)

⎛
⎝ n∑

i,j=1

|ii〉〈jj |
⎞
⎠,

where we use the shorthand |ii〉 = |i〉 ⊗ |i〉. Note that C(	) �
0 and Tr1(C(	)) = 1, where Tr1 denotes the partial trace. Also,
every matrix C ∈ Bh(H ⊗ H) such that C � 0 and Tr1(C) = 1

is a Choi matrix of some channel (see [43, Sec. 4.4.3]).
The Choi matrix C(	) is isomorphic to a state 1

dim(H)C(	),
which corresponds to the channel 	 ⊗ id acting on the
maximally entangled state |ψ+〉〈ψ+|, where

|ψ+〉 = 1√
dim(H)

n∑
i=1

|ii〉.

IV. COMPATIBILITY OF CHANNELS

Definition 9. Let KA,KB1 ,KB2 be state spaces and let
	1,	2 be channels

	1 : KA → KB1 ,

	2 : KA → KB2 .

We say that 	1,	2 are compatible if and only if there exists a
channel

	 : KA → KB1⊗̃KB2

such that 	1 and 	2 are the marginal channels of 	, i.e., we
have

	1 = (id ⊗ 1) ◦ 	, (1)

	2 = (1 ⊗ id) ◦ 	. (2)

The channel 	 is also called the joint channel of the channels
	1,	2.

The operational meaning of compatibility of channels is that
if the channels 	1,	2 are compatible, then we can apply them
both to the input state at once and select which one we actually
want the output from latter. If the channels are incompatible,
we have to choose from which one we want the output before
applying anything. For a more in-depth explanation, see [19].
The important thing is that there is a choice from which channel
we want to get the output so we can expect to see A(KB1 ×
KB2 )∗+ come up in the calculations.

Consider the channel 	 : KA → KB1⊗̃KB2 . One can real-
ize that the maps (id ⊗ 1) : 	 �→ (id ⊗ 1) ◦ 	 and (1 ⊗ id) :
	 �→ (1 ⊗ id) ◦ 	 are linear maps of channels. Moreover,
Eqs. (1) and (2) both have 	 on the right-hand side in the
same position. We are going to exploit this to obtain a simpler
condition for compatibility of the channels 	1,	2. To do so,
we have to introduce a new map J .

Let us define a map J : A(KA) ⊗ A(KB1 )∗ ⊗ A(KB2 )∗ →
A(KA) ⊗ A(KB1 × KB2 )∗ given for � ∈ A(KA) ⊗ A(KB1 )∗ ⊗
A(KB2 )∗ as

J (�) = ((id ⊗ 1) ◦ �,(1 ⊗ id) ◦ �).
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For � = f ⊗ ψ ⊗ ϕ, we have

J (�) = f ⊗ (〈ϕ,1〉ψ,〈ψ,1〉ϕ).

Proposition 6. J is a linear mapping.
Proof. Let �1,�2 ∈ A(KA) ⊗ A(KB1 ⊗ KB2 )∗ and λ ∈ R,

then we have

J (λ�1 + �2) = (λ(id ⊗ 1) ◦ �1 + (id ⊗ 1) ◦ �2,0)

+ (0,λ(1 ⊗ id) ◦ �1 + (1 ⊗ id) ◦ �2)

= λ((id ⊗ 1) ◦ �1,(1 ⊗ id) ◦ �1)

+ ((id ⊗ 1) ◦ �2,(1 ⊗ id) ◦ �2)

= λJ (�1) + J (�2).

�
Assume that the channels 	1,	2 are compatible and that

	 is their joint channel, then we must have

J (	) = (	1,	2)

which is just a more compact form of Eqs. (1) and (2).
Proposition 7. The channels 	1,	2 are compatible if and

only if there is 	 ∈ A(KA)+⊗̂A(KB1⊗̃KB2 )∗+ such that

J (	) = (	1,	2). (3)

Proof. If the channels 	1,	2 are compatible, then Eq. (3)
must hold for their joint channel 	. If Eq. (3) holds for some
	 ∈ A(KA)+⊗̂A(KB1⊗̃KB2 )∗+, then the channels 	1,	2 are
compatible and 	 is their joint channel. �

The operational interpretation is that (	1,	2) represents
a conditional channel in the same way as the states from
A(KB1 × KB2 )∗+ represent conditional states that keep track of
some choice made in the past. If the channels are compatible,
then we actually do not have to make the choice of either
using 	1 or 	2, but we can use their joint channel, that has the
property that its marginals reproduce the outcomes of the two
channels 	1,	2. We will investigate several of the properties
of the map J .

Proposition 8. For every (ξ1,ξ2) ∈ A(KA) ⊗ A(KB1 ×
KB2 )∗ there is a � ∈ A(KA) ⊗ A(KB1 )∗ ⊗ A(KB2 )∗ such that

J (�) = (ξ1,ξ2).

Moreover, if we have

(1,1) ◦ (ξ1,ξ2) = 1,

then

(1 ⊗ 1) ◦ � = 1.

Proof. Let f1, . . . ,fn be a basis of A(KA), then we have

ξ1 =
n∑

i=1

fi ⊗ ψi, ξ2 =
n∑

i=1

fi ⊗ ϕi

for some ψi ∈ A(KB1 )∗ and ϕi ∈ A(KB2 )∗. Since we must have

(1,0) ◦ (ξ1,ξ2) = (0,1) ◦ (ξ1,ξ2),

we obtain
n∑

i=1

〈ψi,1〉fi =
n∑

i=1

〈ϕi,1〉fi,

which implies

〈ψi,1〉 = 〈ϕi,1〉 = ki

for all i ∈ {1, . . . ,n} as f1, . . . ,fn is linearly independent. Let

� =
n∑

i=1

k−1
i fi ⊗ ψi ⊗ ϕi,

then we have

J (�) =
n∑

i=1

k−1
i fi ⊗ (〈

ϕi,1B2

〉
ψi,

〈
ψi,1B1

〉
ϕi

)

=
n∑

i=1

fi ⊗ (ψi,ϕi).

If we have 1 ◦ (ξ1,ξ2) = 1, then
n∑

i=1

kifi = 1

and we get

(1 ⊗ 1) ◦ � = (1 ⊗ 1) ◦
(

n∑
i=1

k−1
i fi ⊗ ψi ⊗ ϕi

)

=
n∑

i=1

k−1
i 〈ψi,1〉〈ϕi,1〉fi = 1.

�
Proposition 9. We have

J
(
A(KA)+⊗̇A

(
KB1

)∗+⊗̇A
(
KB2

)∗+)

= A(KA)+⊗̇A
(
K1 × KB2

)∗+
.

Proof. Let (ξ1,ξ2) ∈ A(KA)+⊗̇A(KB1 × KB2 )∗+, then as in
the proof of Proposition 8 we have

ξ1 =
n∑

i=1

fi ⊗ ψi, ξ2 =
n∑

i=1

fi ⊗ ϕi,

but now we have fi � 0, ψi � 0, and ϕi � 0 for i ∈
{1, . . . ,n}. It follows by the same construction as in the proof of
Proposition 8 that we can construct � = ∑n

i=1 k−1
i fi ⊗ ψi ⊗

ϕi and we get � ∈ A(KA)+⊗̇A(KB1 )∗+⊗̇A(KB2 )∗+.
Let � ∈ A(KA)+⊗̇A(KB1 )∗+⊗̇A(KB2 )∗+, then we have

� = ∑n
i=1 fi ⊗ ψi ⊗ ϕi such that fi � 0, ψi � 0, ϕi � 0 for

all i ∈ {1, . . . ,n}, moreover, without lack of generality we can
assume 〈ψi,1B1〉 = 〈ϕi,1B2〉 = 1. We have

J (�) =
n∑

i=1

fi ⊗ (ψi,ϕi) ∈ A(KA)+⊗̇A
(
KB1 × KB2

)∗+
,

which concludes the proof. �
It would be very useful to know what is the image of the

cone A(KA)+⊗̂A(KB1⊗̃KB2 )∗+ when mapped by J . We will
denote the resulting cone Q = J (A(KA)+⊗̂A(KB1⊗̃KB2 )∗+).
The cone is important due to the following:

Corollary 1. The channels 	1,	2 are compatible if and
only if

(	1,	2) ∈ Q = J
(
A(KA)+⊗̂A

(
KB1⊗̃KB2

)∗+)
.
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Proof. Follows from Proposition 7. �
Proposition 10. A(KA)+⊗̇A(KB1 × KB2 )∗+ ⊂ Q.
Proof. Since

A(KA)+⊗̇A
(
KB1⊗̇KB2

)∗+ ⊂ A(KA)+⊗̂A
(
KB1⊗̃KB2

)∗+
,

we must have

J
(
A(KA)+⊗̇A

(
KB1⊗̇KB2

)∗+) ⊂ Q.

The result follows from Proposition 9. �
Proposition 11. Q ⊂ A(KA)+⊗̂A(KB1 × KB2 )∗+.
Proof. Since we have

A(KA)+⊗̂A
(
KB1⊗̃KB2

)∗+ ⊂ A(KA)+⊗̂A
(
KB1⊗̂KB2

)∗+
,

we must have

Q ⊂ J
(
A(KA)+⊗̂A

(
KB1⊗̂KB2

)∗+)
.

Let � ∈ A(KA)+⊗̂A(KB1⊗̂KB2 )∗+, then for ψ ∈ A(KA)∗+
and (f1,f2) ∈ A(KB1 × KB2 )+ we get

〈J (�),x ⊗ f 〉 = 〈((id ⊗ 1) ◦ �,(1 ⊗ id) ◦ �),x ⊗ f 〉
= 〈�(x),f1 ⊗ 1〉 + 〈�(x),1 ⊗ f2〉 � 0,

that shows we have J (A(KA)+⊗̂A(KB1⊗̂KB2 )∗+) ⊂
A(KA)+⊗̂A(KB1 × KB2 )∗+, which concludes the proof. �

We can also construct Q as the cone we get when we
factorize the cone A(KA)+⊗̂A(KB1⊗̃KB2 )∗+ with respect to
the relation of equivalence given as follows: �1 ≈ �2 if and
only if J (�1) = J (�2) or, equivalently, if and only if �1 =
�2 + �, such that J (�) = 0.

Note that since J is a linear map, as we showed in
Proposition 6, it is clear that Q is a convex cone. For two
given channels 	1 : KA → KB1 ,	2 : KA → KB1 one may
write a primal linear program that would check the condition
for compatibility given by Corollary 1. We will write such
linear program for quantum channels later.

V. COMPATIBILITY OF MEASUREMENTS

We will apply the results of Sec. IV to the problem of
compatibility of measurements. We will obtain the same
results that were recently presented in Ref. [26], that are a
generalization of [44].

Let KA be a state space and let S1, S2 be simplexes and let
m1 : KA → S1,m2 : KA → S2 be measurements. According
to Proposition 7, the measurements m1,m2 are compatible if
and only if

(m1,m2) ∈ J (A(KA)+⊗̂A(S1⊗̃S2)∗+).

Since both S1 and S2 are simplexes, then we have S1⊗̃S2 =
S1⊗̇S2 and the condition for compatibility reduces according
to Proposition 9 to

(m1,m2) ∈ A(KA)+⊗̇A(S1 × S2)∗+.

Due to the simpler structure of simplexes, one may get even
more specific results about measurements (see [26]).

For demonstration of the derived conditions we will recon-
struct the result of [44] about compatibility of two-outcome
measurements. According to our definition, a measurement is
two-outcome if the simplex it has as a target space has two
vertexes, i.e., it is a line segment. Let K be a state space,

f,g ∈ E(K) and mf : K → S,mg : K → S be two-outcome
measurements given as

mf = f ⊗ δω1 + (1 − f ) ⊗ δω2 ,

mg = g ⊗ δω1 + (1 − g) ⊗ δω2 .

The state space given by A(S × S)∗+ is a square given
as conv((δω1,δω1 ),(δω1,δω2 ),(δω2 ,δω1 ),(δω2 ,δω2 )), that is just
affinely isomorphic to S × S. We have

(m1,m2) = f ⊗ (
δω1 ,0

) + (1 − f ) ⊗ (
δω2 ,0

)
+ g ⊗ (

0,δω1

) + (1 − g) ⊗ (
0,δω2

)
= f ⊗ (

δω1 ,δω2

) + (1 − f ) ⊗ (
δω2 ,δω2

)
+ g ⊗ (

0,δω1 − δω2

)
,

where in the second step we have used the basis
(δω1 ,δω2 ), (δω2 ,δω2 ), (0,δω1 − δω2 ) of A(S × S)∗ to express
(m1,m2) in a more reasonable form. To have (m1,m2) ∈
A(K)+⊗̇A(S × S)∗+ we must have

(m1,m2) = h11 ⊗ (
δω1 ,δω1

) + h12 ⊗ (
δω1 ,δω2

)
+ h21 ⊗ (

δω2 ,δω1

) + h22 ⊗ (
δω2 ,δω2

)
= (h11 + h12) ⊗ (

δω1 ,δω2

)
+ (h21 + h22) ⊗ (

δω2 ,δω2

)
+ (h11 + h21) ⊗ (

0,δω1 − δω2

)
for some h11,h12,h21,h22 ∈ E(K). This implies the standard
conditions for the compatibility of two-outcome measure-
ments mf ,mg:

f = h11 + h12,

1 − f = h21 + h22,

g = h11 + h21

(see, e.g., [45]).

VI. COMPATIBILITY OF QUANTUM CHANNELS

In this section, we will derive results more specific to
the compatibility of quantum channels. Let 	1 : DH →
DH,	2 : DH → DH be quantum channels, then, according
to Proposition 7 they are compatible if and only if there is a
channel 	 : DH → DH⊗H such that for all ρ ∈ DH we have

(	1(ρ),	2(ρ)) = (Tr2(	(ρ)),Tr1(	(ρ))). (4)

This is equivalent to the definition of compatibility of quantum
channels already stated in Ref. [21]. It is straightforward that
Eq. (4) implies that

(C(	1),C(	2)) = (Tr2(C(	)),Tr1(C(	))),

we will show that they are equivalent. This will help us to get
rid of the state ρ in Eq. (4).

Proposition 12. The channels 	1 : DH → DH,	2 :
DH → DH are compatible if and only if there exists a channel
	 : DH → DH⊗H such that

(C(	1),C(	2)) = (Tr2(C(	)),Tr1(C(	))).
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Proof. Let ρ ∈ DH, then we have

Tr2(	(ρ)) = Tr2,E(C(	)1⊗ 1⊗ ρT )

= TrE(Tr2(C(	))1⊗ ρT )

= TrE(C(	1)1⊗ ρT ) = 	1(ρ).

The same follows for 	2. �
As we already showed in Sec. IV, the cone Q =

J (A(DH)+⊗̂A(DH⊗H)∗+) is of interest for the compatibility
of channels. In the case of quantum channels we will use
Proposition 12 to formulate similar cone in terms of Choi
matrices of the channels and we will write a semidefinite
program for the compatibility of quantum channels based on
this approach.

Denote P = {(Tr2(C),Tr1(C)) : C ∈ CH→H⊗H}, then ac-
cording to Proposition 12 the channels 	1 : DH → DH,	2 :
DH → DH are compatible if and only if

(C(	1),C(	2)) ∈ P.

Note that, by our definition, P is not a cone, but it generates
some cone just by adding all of the operators of the form λC,
where C ∈ P and λ ∈ R, λ � 0.

It would be very interesting to obtain more specific results
on the structure of P , but the task is not trivial. To make it
simpler, we will investigate the structure of the dual cone P ∗
given as

P ∗ = {(A,B) ∈ Bh(H) × Bh(H) :

〈C,(A,B)〉 � 0, ∀ C ∈ P }.
Notice that (A,B) ∈ Bh(H) × Bh(H) is simply a block-
diagonal matrix having blocks A and B. Also, every C ∈ P is
a block-diagonal matrix, let C = (C1,C2), then

〈(C1,C2),(A,B)〉 = Tr(C1A) + Tr(C2B).

Let C ∈ P , then by definition there exists a channel 	 : DH →
DH⊗H such that

C = (Tr2(C(	)),Tr1(C(	))).

Let (A,B) ∈ P ∗, then we have

〈C,(A,B)〉 = Tr(Tr2(C(	))A + Tr1(C(	))B)

= Tr(C(	)(Ã + 1⊗ B)) � 0,

where Ã is the operator such that Tr(Tr2(C(	))A) =
Tr(C(	)Ã). If A = A1 ⊗ A2, then Ã = A1 ⊗ 1⊗ A2. In
general, one can write A as a sum of factorized operators
and express Ã in such way because the map A �→ Ã is linear.

The result is that Ã + 1⊗ B must correspond to a positive
function on quantum channels, hence, we must have Ã + 1⊗
B � 0 (see [46,47]). We have proved the following:

Proposition 13. The channels 	1 : DH → DH,	2 :
DH → DH are compatible if and only if

Tr(C(	1)A) + Tr(C(	2)B) � 0

for all A,B ∈ Bh(H ⊗ H) such that

Ã + 1⊗ B � 0.

This allows us to formulate the semidefinite program [38]
for the compatibility of quantum channels as follows:

Proposition 14. Given channels 	1 : DH → DH,	2 :
DH → DH, the semidefinite program for the compatibility
of quantum channels is

inf
A,B

Tr(C(	1)A) + Tr(C(	2)B), Ã + 1⊗ B � 0,

where Ã is given as above.
If the reached infimum is negative, then the channels are

incompatible; if the reached infimum is 0, then the channels
are compatible.

Proof. The result follows from Proposition 13. One may see
that the infimum is at most 0 because one may always chose
A = B = 0. �

VII. PRELUDE TO STEERING AND BELL NONLOCALITY

We will propose a possible test for the compatibility of
channels that will not work, but it will motivate our definitions
of steering and Bell nonlocality.

Let KA,KB1 ,KB2 be state spaces and let 	1 : KA →
KB1 ,	2 : KA → KB2 be channels. The channels 	1,	2 are
compatible if Eq. (3) is satisfied for some channel 	 : KA →
KB1⊗̃KB2 . This is the same as saying the channels 	1,	2 are
compatible if for all x ∈ KA we have

(	1(x),	2(x)) = (((id ⊗ 1) ◦ 	)(x),((1 ⊗ id) ◦ 	)(x)). (5)

If the channels 	1 and 	2 are compatible, then for every
x ∈ KA there must exist a state y ∈ KB1⊗̃KB2 such that

	1(x) = (id ⊗ 1)(y), (6)

	2(x) = (1 ⊗ id)(y). (7)

Would it be a reasonable test for the compatibility of the
channels 	1 and 	2 if we considered the state x ∈ KA

fixed and we would test whether, for the fixed state x, there
exists y ∈ KB1⊗̃KB2 such that Eqs. (6) and (7) are satisfied?
It would not, because for a fixed x ∈ KA one always has
	1(x) ⊗ 	2(x) ∈ KB1⊗̃KB2 that satisfies Eqs. (6) and (7).

Still, throwing away this line of thinking would not be a
good choice because going further, one may ask the following:
If there would be another system KC , such that KC⊗̃KA is
defined, then what if we would use the entanglement between
the systems KA and KC to obtain a better condition for the
compatibility of the channels 	1,	2 using the very same line
of thinking? As we will see, this approach leads to the notions
of steering and Bell nonlocality.

VIII. STEERING

Steering is one of the puzzling phenomena we find in
quantum theory but not in classical theory. It is usually
described as a two-party protocol, that allows one side to alter
the state of the other in a way that would not be possible in
classical theory by performing a measurement and announcing
the outcome. Although originally discovered by Schrödinger
[1], steering was formalized in Ref. [27]. Recently, there was
introduced a new formalism for steering in Ref. [26].

So far, it was always only considered that during steering
one party performs a measurement. Since a measurement is a
special case of a channel, one may ask whether it is possible
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to define steering by channels. We will use our formalism for
compatibility of channels to introduce steering by channels
by continuing the line of thoughts presented in Sec. VII. We
will have to formulate steering in a little different way than it
usually is formulated for measurements, but we will show that
for measurements we will obtain the known results.

Let KA,KB1 ,KB2 ,KC be finite-dimensional state spaces,
such that KC⊗̃KA is defined and let

	1 : KA → KB1 ,

	2 : KA → KB2

be channels. We can construct channels

id ⊗ 	1 : A(KC)∗+⊗̃A(KA)∗+ → A(KC)∗+⊗̂A
(
KB1

)∗+
,

id ⊗ 	2 : A(KC)∗+⊗̃A(KA)∗+ → A(KC)∗+⊗̂A
(
KB2

)∗+
.

Moreover, we can construct the conditional channel

id ⊗ (	1,	2) : A(KC)∗+⊗̃A(KA)∗+

→ A(KC)∗+⊗̂A
(
KB1 × KB2

)∗+
.

These channels play a central role in steering and we will keep
this notation throughout this section. First, we will introduce
a handy name for the output state of id ⊗ (	1,	2).

Definition 10. Let ψ ∈ KC⊗̃KA be a bipartite state, then
we call (id ⊗ (	1,	2))(ψ) a bipartite conditional state.

Steering may be seen as a three-party protocol that tests
the compatibility of channels. The parties in question will be
named Alice, Bob, and Charlie. Alice and Charlie share a
bipartite state ψ ∈ KC⊗̃KA and Alice has the channels 	1

and 	2 at her disposal, that would send her part of the state ψ

to Bob. Since Alice can choose between the channels 	1 and
	2, she will be, in our formalism, applying the conditional
channel (	1,	2) and the resulting state will be a bipartite
state from A(KC)∗+⊗̃A(KB1 × KB2 )∗+. The structure of the
resulting bipartite conditional state (id ⊗ (	1,	2))(ψ) will not
only depend on the input state ψ , but also on the compatibility
of the channels 	1 and 	2. Let us assume that the channels
	1 and 	2 are compatible, then there is a channel 	 : KA →
KB1⊗̃KB2 such that (	1,	2) = J (	) and we have

(id ⊗ (	1,	2))(ψ) = (id ⊗ J (	))(ψ)

= (id ⊗ J ′)((id ⊗ 	)(ψ)),

where J ′ : A(KB1⊗̃KB2 )∗ → A(KB1 × KB2 )∗, J ′(ψ) =
((id ⊗ 1)(ψ),(1 ⊗ id)(ψ)). The calculation shows that if the
channels 	1,	2 are compatible, then we must have

(id ⊗ (	1,	2))(ψ) ∈ (id ⊗ J ′)
(
KC⊗̃KB1⊗̃KB2

)
which does not have to hold in general if the channels are not
compatible. This shows that we can define steering of a state
by channels as an entanglement-assisted incompatibility test.

Definition 11. The bipartite state ψ ∈ A(KC)∗+⊗̃A(KA)∗+
is steerable by channels 	1 : A(KA)∗+ → A(KB1 )∗+, 	2 :
A(KA)∗+ → A(KB2 )∗+ if

(id ⊗ (	1,	2))(ψ) /∈ (id ⊗ J ′)
(
KC⊗̃KB1⊗̃KB2

)
.

Now, we present the standard result about the connection
between compatibility of the channels and steering. The result
follows from our definition immediately.

Corollary 2. The bipartite state ψ ∈ A(KC)∗+⊗̃A(KA)∗+
is not steerable by channels 	1 : A(KA)∗+ → A(KB)∗+, 	2 :
A(KA)∗+ → A(KB)∗+ if the channels 	1 and 	2 are compat-
ible.

Proof. If the channels 	1,	2 are compatible, then we have
(	1,	2) = J (	) for some 	 : KA → KB1⊗̃KB2 and for every
ψ ∈ KC⊗̃KA we have

(id ⊗ (	1,	2))(ψ) ∈ (id ⊗ J ′)
(
KC⊗̃(

KB1⊗̃KB2

))
.

�
Proposition 15. The bipartite state ψ ∈ A(KC)∗+

⊗̃A(KA)∗+ is not steerable by channels 	1 : A(KA)∗+→
A(KB)∗+,	2 : A(KA)∗+ → A(KB)∗+ if ψ ∈ A(KC)∗+⊗̇
A(KA)∗+, i.e., if ψ is separable.

Proof. Every separable state is by definition a convex com-
bination of product states, i.e., of states of the form xC ⊗ xA,
where xA ∈ KA, xC ∈ KC . Since the maps id ⊗ (	1,	2) and
id ⊗ J ′ are linear, it is sufficient to prove that for every product
state xC ⊗ xA ∈ KC⊗̇KA we have (id ⊗ (	1,	2))(xC ⊗ xA) ∈
(id ⊗ J ′)(KC⊗̃KB1⊗̃KB2 ). It follows by our construction in
Sec. VII that product states are not steerable by any channels
as one can always take xC ⊗ 	1(xA) ⊗ 	2(xA). Remember
that during steering, we fix not only the channels, but also the
bipartite state, so the presented construction is valid. �

IX. STEERING BY MEASUREMENTS

We will show that the definition of steering given by
Definition 11 follows the standard definition of steering [27]
in the formalism introduced in Ref. [26], when we replace
measurements by channels.

Proposition 16. Let S1, S2 be simplexes and let m1 :
KA → S1,m2 : KA → S2 be measurements, then, a state ψ ∈
KC⊗̃KA is steerable by m1,m2 if and only if

(id ⊗ (m1,m2))(ψ) /∈ KC⊗̇(S1 × S2).

Proof. The result follows from the fact that KC⊗̃S1⊗̃S2 =
KC⊗̇S1⊗̇S2. �

To obtain the standard definition of steering, one only needs
to note that if ξ ∈ KC⊗̇(S1 × S2), then there are xi ∈ KC, si ∈
S1 × S2 and 0 � λi � 1 for i ∈ {1, . . . ,n} such that

ξ =
n∑

i=1

λixi ⊗ si, (8)

where the interpretation of si is that it is a conditional
probability, conditioned by the choice of the measurement. At
this point, it is straightforward to see that Eq. (8) corresponds
to [27, Eq. (5)].

X. STEERING BY QUANTUM CHANNELS

Steering plays an important role in quantum theory. It has
found so far applications in quantum cryptography [48] as
an intermediate step between quantum key distribution and
device-independent quantum key distribution.

We will prove several results and present a simple example
of steering by quantum channels. Given the standard, opera-
tional, interpretation of steering by measurements the example
may seem strange, but rather expected.
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Let 	1 : DH → DH,	2 : DH → DH be channels and let
|ψ+〉 = [dim(H)]−

1
2
∑dim(H)

i=1 |ii〉 be the maximally entangled
vector. We will show that the maximally entangled state
|ψ+〉〈ψ+| is steerable by the channels 	1,	2 whenever they
are incompatible.

The proof is rather simple as the bipartite conditional
state we obtain is (id ⊗ (	1,	2))(|ψ+〉〈ψ+|). If the channels
	1,	2 are compatible, then the state |ψ+〉〈ψ+| is not steerable
by compatible channels. Now, let us assume that there is a state
in ρ ∈ DH⊗H⊗H such that we have

(id ⊗ (	1,	2))(|ψ+〉〈ψ+|) = (id ⊗ J ′)(ρ), (9)

i.e., that the state |ψ+〉〈ψ+| is not steerable by the channels
	1,	2. Equation (9) implies that we must have

(id ⊗ 	1)(|ψ+〉〈ψ+|) = Tr3(ρ),

that, after taking trace over the second Hilbert space, gives

1

dim(H)
1 = Tr23(ρ). (10)

Now, the picture becomes clear: (id ⊗ 	1)(|ψ+〉〈ψ+|) is
isomorphic to the Choi matrix C(	1) and Eq. (10) implies
that the state ρ must be isomorphic to a Choi matrix of
some channel 	. This together with Proposition 12 means
that Eq. (9) holds if and only if the channels are compatible.
Thus, we have proved the following:

Proposition 17. The maximally entangled state |ψ+〉〈ψ+|
is steerable by channels 	1 : DH → DH,	2 : DH → DH if
and only if they are incompatible.

We will investigate steering by unitary channels. We will
see a phenomenon that is impossible to happen for steering
by measurements: it is possible to steer a state when the two
channels we are testing for incompatibility are two copies of
the same channel. Let U,V be unitary matrices, i.e., UU ∗ =
V V ∗ = 1, where U ∗ denotes the conjugate transpose matrix
to U and let 	U,	V be the corresponding unitary channels,
that is, for ρ ∈ DH we have

	U (ρ) = UρU ∗, 	V (ρ) = VρV ∗.

Note that we have 	1 = id, i.e., the unitary channel given by
an identity matrix is the identity channel.

Proposition 18. The bipartite state ρ ∈ DH⊗H is steerable
by the unitary channels 	U,	V if and only if it is steerable
by two copies of the identity channel id.

Proof. The state ρ ∈ DH⊗H is steerable by the channels
	U,	V if and only if there is a state σ ∈ DH⊗H⊗H such that

Tr3(σ ) = (id ⊗ 	U )(ρ), Tr2(σ ) = (id ⊗ 	V )(ρ).

If such state σ exists, then for σ̃ = (id ⊗ 	U∗ ⊗ 	V ∗ )(σ ) we
have

Tr3(σ̃ ) = ρ, Tr2(σ̃ ) = ρ,

i.e., the state ρ is not steerable by two copies of id. The same
holds the other way around by almost the same construction;
if the state ρ is not steerable by two copies of id, then it is not
steerable by any unitary channels 	U,	V . �

Note that a similar result would hold if only one of the
channels would be unitary, but then only that one unitary
channel would be replaced by the identity map id. Clearly, if

the state ρ would be separable, then it would not be steerable
by any channel. The converse does not hold, even if the state ρ

is entangled it still may not be steerable by any channels. We
will provide a useful condition for the steerability of a given
state ρ ∈ DH⊗H that will help us to show that even if the state
ρ is entangled, it does not have to be steerable by any pair of
channels 	1 : DH → DH,	2 : DH → DH.

Proposition 19. The state ρ ∈ DH⊗H is steerable by the
channels 	1 : DH → DH,	2 : DH → DH only if it is steer-
able by two copies of the identity channel id : DH → DH.

Proof. Assume that the state ρ ∈ DH⊗H is not steerable by
two copies of the identity channel id : DH → DH, then there
exists a state σ ∈ DH⊗H⊗H such that

Tr3(σ ) = ρ, Tr2(σ ) = ρ.

Let 	1 : DH → DH,	2 : DH → DH be any two channels
and denote

σ̃ = (id ⊗ 	1 ⊗ 	2)(σ ),

then we have

Tr3(σ̃ ) = (id ⊗ 	1)(ρ), Tr2(σ̃ ) = (id ⊗ 	2)(ρ),

so the state ρ is not steerable by the channels 	1,	2. �
Note that one may get other conditions for steering by

replacing only one of the channels by the identity map id. One
may generalize this result to the general probabilistic theory,
but it may be rather restrictive and not as general as one would
wish. One may also use the idea of the proof of Proposition 19
together with the result of Proposition 17 to obtain the results
on compatibility of channels that are concatenations of other
channels, similar to the results obtained in Ref. [21].

We will present an example of an entangled state that is not
steerable by any pair of channels.

Example 7. Let dim(H) = 2 with the standard basis |0〉, |1〉
and let |W 〉 ∈ H ⊗ H ⊗ H be given as

|W 〉 = 1√
3

(|001〉 + |010〉 + |100〉).

The projector |W 〉〈W | ∈ DH⊗H⊗H is known as W state. We
have

ρW = Tr2(|W 〉〈W |) = Tr3(|W 〉〈W |) ∈ DH⊗H,

that shows that the state ρW is not steerable by a pair of
the identity channels id : DH → DH, which as a result of
Proposition 19 means that it is not steerable by any channels
	1 : DH → DH,	2 : DH → DH. Moreover it is known that
the state ρW is entangled [43, Example 6.70].

Since it will be useful in later calculations, we will
show that the state |W 〉〈W | is the only state from DH⊗H⊗H
such that ρW = Tr2(|W 〉〈W |) = Tr3(|W 〉〈W |). Let |ϕ〉 =

1√
2
(|01〉 + |10〉), then we have

ρW = 1
3 |00〉〈00| + 2

3 |ϕ〉〈ϕ|.
Let σ ∈ DH⊗H⊗H denote the state such that ρW =
Tr2(σ ) = Tr3(σ ). We have ρW |11〉 = 0 that implies
Tr(σ |11〉〈11| ⊗ 1) = Tr(σ |1〉〈1| ⊗ 1⊗ |1〉〈1|) = 0 that im-
plies 〈111|σ |111〉 = 〈110|σ |110〉 = 〈101|σ |101〉 = 0 as σ �
0. We will show that this implies σ |111〉 = σ |110〉 =
σ |101〉 = 0.
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Let A ∈ Bh(H), A � 0, and let |ψ〉 ∈ H. Let ‖ψ‖ =√〈ψ |ψ〉 denote the norm given by inner product. Assume
that we have 〈ψ |A|ψ〉 = 0, then

‖
√

Aψ‖2 = 〈
√

Aψ |
√

Aψ〉 = 〈ψ |A|ψ〉 = 0

and in conclusion we have
√

A|ψ〉 = 0 and

A|ψ〉 =
√

A(
√

A|ψ〉) = 0.

Finally, let us denote |ϕ⊥〉 = 1√
2
(|01〉 − |10〉). We have

ρW |ϕ⊥〉 = 0 that implies Tr(σ |ϕ⊥〉〈ϕ⊥| ⊗ 1) = 0 which
yields σ |ϕ⊥0〉 = σ |ϕ⊥1〉 = 0. We still use the shorthand
|ϕ⊥0〉 = |ϕ⊥〉 ⊗ |0〉.

The eight vectors |000〉, |001〉, |ϕ0〉, |ϕ1〉, |ϕ⊥0〉, |ϕ⊥1〉,
|110〉, |111〉 form an orthonormal basis of H ⊗ H ⊗ H. We
have already showed that we must have

σ |ϕ⊥0〉 = σ |ϕ⊥1〉 = σ |110〉 = σ |111〉 = 0,

so in general we must have

σ = a00|000〉〈000| + a01|001〉〈001| + aϕ0|ϕ0〉〈ϕ0|
+ aϕ1|ϕ1〉〈ϕ1| + b1|000〉〈001| + b̄1|001〉〈000|
+ b2|000〉〈ϕ0| + b̄2|ϕ0〉〈000| + b3|000〉〈ϕ1|
+ b̄3|ϕ1〉〈000| + b4|001〉〈ϕ0| + b̄4|ϕ0〉〈001|
+ b5|001〉〈ϕ1| + b̄5|ϕ1〉〈001| + b6|ϕ0〉〈ϕ1|
+ b̄6|ϕ1〉〈ϕ0|.

Using the above expression for σ we get

Tr2(σ ) = a00|00〉〈00| + a01|01〉〈01| + aϕ0

2
1⊗ |0〉〈0|

+ aϕ1

2
1⊗ |1〉〈1| + b1|00〉〈01| + b̄1|01〉〈00|

+ b2√
2
|00〉〈10| + b̄2√

2
|10〉〈00| + b3√

2
|00〉〈11|

+ b̄3√
2
|11〉〈00| + b4√

2
|01〉〈10| + b̄4√

2
|10〉〈01|

+ b5√
2
|01〉〈11| + b̄5√

2
|11〉〈01| + b6

2
1⊗ |0〉〈1|

+ b̄6

2
1⊗ |1〉〈0|,

that implies a00 = aϕ1 = 0, aϕ0 = 2
3 , a01 = 1

3 , b1 = b2 =
b3 = b5 = b6 = 0, and b4 =

√
2

3 . In conclusion, we have

σ = 1
3 (|001〉〈001| + 2|ϕ0〉〈ϕ0|
+

√
2|001〉〈ϕ0| +

√
2|ϕ0〉〈001|)

= |W 〉〈W |.

XI. BELL NONLOCALITY

Bell nonlocality is, similarly to steering, a phenomenom
that we do not find in classical theory, but is often used in
quantum theory. Bell nonlocality [2] was formulated as a
response to the well-known EPR paradox [3]. Although in the
original formulation the operational idea was different than

the one we will present, we will see that Bell nonlocality may
be understood as an incompatibility test, in the same way as
steering.

Let us assume that we have four parties: Alice, Bob,
Charlie, and Dan. Alice has two channels 	A

1 : KA → KB1

and 	A
2 : KA → KB2 that she can use to send a state to

Bob, and Charlie has two channels 	C
1 : KC → KD1 and

	C
2 : KC → KD2 that he can use to send a state to Dan.

Assume that KC⊗̃KA is defined and let ψ ∈ KC⊗̃KA be a
bipartite state shared by Alice and Charlie. The idea that we
use to define Bell nonlocality is very simple: if we were able to
use (id ⊗ (	A

1 ,	A
2 ))(ψ) and ((	C

1 ,	C
2 ) ⊗ id)(ψ) as nontrivial

incompatibility test, we may as well investigate whether
((	C

1 ,	C
2 ) ⊗ (	A

1 ,	A
2 ))(ψ) provides an incompatibility test in

the same manner.
Definition 12. Let ψ ∈ KC⊗̃KA and let

	A
1 : KA → KB1 ,

	A
2 : KA → KB2 ,

	C
1 : KC → KD1 ,

	C
2 : KC → KD2

be channels. We call the state ((	C
1 ,	C

2 ) ⊗ (	A
1 ,	A

2 ))(ψ)
bipartite biconditional state.

Assume that the channels 	A
1 and 	A

2 are compatible,
so that we have (	A

1 ,	A
2 ) = J (	A) for some channel 	A :

KA → KB1⊗̃KB2 and also that the channels 	C
1 and 	C

2 are
compatible, so there is a channel 	C : KC → KD1⊗̃KD2 such
that (	A

1 ,	A
2 ) = J (	A). Let ψ ∈ KC⊗̃KA, then we have

((
	C

1 ,	C
2

) ⊗ (
	A

1 ,	A
2

))
(ψ) = (J ′ ⊗ J ′)((	C ⊗ 	A)(ψ)),

where the maps J ′ are defined as before, with the exception
that we denote them the same even though they map different
spaces.

We present a definition of Bell nonlocality using the same
line of thinking as we used in Definition 11. For simplicity we
will denote

QDC = (J ′ ⊗ J ′)
(
KD1⊗̃KD2⊗̃KC1⊗̃KC2

)
.

Definition 13. Let ψ ∈ KC⊗̃KA be a bipartite state and
let 	A

1 : KA → KB1 ,	
A
2 : KA → KB2 ,	

C
1 : KA → KC1 , and

	C
2 : KA → KD2 be channels. We say that the bipartite

biconditional state ((	C
1 ,	C

2 ) ⊗ (	A
1 ,	A

2 ))(ψ) is Bell nonlocal
if

((
	C

1 ,	C
2

) ⊗ (
	A

1 ,	A
2

))
(ψ) /∈ QDC.

Otherwise, we call the bipartite biconditional state Bell local.
The following result follows immediately from Defini-

tion 13.
Corollary 3. Let ψ ∈ KC⊗̃KA be a bipartite state and

let 	A
1 : KA → KB1 ,	

A
2 : KA → KB2 ,	

C
1 : KA → KC1 , and

	C
2 : KA → KD2 be channels. The bipartite biconditional

state ((	C
1 ,	C

2 ) ⊗ (	A
1 ,	A

2 ))(ψ) is Bell nonlocal only if the
channels 	A

1 ,	A
2 and 	C

1 ,	C
2 are incompatible.

We will show that entanglement plays a key role in Bell
nonlocality.

Proposition 20. Let ψ ∈ KC⊗̇KA be a separable bipartite
state and let 	A

1 : KA → KB1 ,	
A
2 : KA → KB2 ,	

C
1 : KA →
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KC1 , and 	C
2 : KA → KD2 be channels. The bipartite bicon-

ditional state ((	C
1 ,	C

2 ) ⊗ (	A
1 ,	A

2 ))(ψ) is Bell local.
Proof. It is again sufficient to consider ψ = xC ⊗ xA for

xA ∈ KA, xC ∈ KC due to the linearity of the maps (	A
1 ,	A

2 )
and (	C

1 ,	C
2 ). Consider the state ϕ ∈ KD1⊗̃KD2⊗̃KC1⊗̃KC2

given as

ϕ = 	C
1 (xC) ⊗ 	C

2 (xC) ⊗ 	A
1 (xA) ⊗ 	A

2 (xA),

then we have
((

	C
1 ,	C

2

) ⊗ (
	A

1 ,	A
2

))
(ψ) = (J ′ ⊗ J ′)(ϕ).

�

XII. BELL NONLOCALITY OF MEASUREMENTS

We will again show that Definition 13 follows the standard
definition of Bell nonlocality [27] in the formalism of [26].

Proposition 21. Let SA
1 , SA

2 , SC
1 , and SC

2 be sim-
plexes and let mA

1 : KA → SA
1 ,mA

2 : KA → SA
2 ,mC

1 : KC →
SC

1 ,mC
2 : KC → SC

2 be measurements. Let ψ ∈ KC⊗̃KA, then
the bipartite biconditional state ((mC

1 ,mC
2 ) ⊗ (mA

1 ,mA
2 ))(ψ) is

Bell nonlocal if
((

mC
1 ,mC

2

) ⊗ (
mA

1 ,mA
2

))
(ψ) /∈ (

SC
1 × SC

2

)⊗̇(
SA

1 × SA
2

)
.

Proof. By direct calculation we have

QCD = (J ′ ⊗ J ′)
(
SC

1 ⊗̇SC
2 ⊗̇SA

1 ⊗̇SA
2

)
= (

SC
1 × SC

2

)⊗̇(
SA

1 × SA
2

)
.

�
One may again use the interpretation that both SC

1 × SC
2 and

SA
1 × SA

2 are spaces of conditional measurement probabilities,
so if we have ψ ∈ (SC

1 × SC
2 )⊗̇(SA

1 × SA
2 ), then we must have

0 � λi � 1, for i ∈ {1, . . . ,n}, ∑n
i=1 λi = 1, such that

ψ =
n∑

i=1

λis
C
i ⊗ sA

i ,

where in standard formulations both sC
i ∈ SC

1 × SC
2 and sA

i ∈A
1×SA

2 are represented by probabilities, i.e., by numbers, so the
tensor product between them is omitted.

We will provide proof of the standard and well-known
result about connection of steering and Bell nonlocality of
measurements.

Proposition 22. Let SA
1 , SA

2 , SC
1 , and SC

2 be sim-
plexes and let mA

1 : KA → SA
1 ,mA

2 : KA → SA
2 ,mC

1 : KC →
SC

1 ,mC
2 : KC → SC

2 be measurements. Let ψ ∈ KC⊗̃KA. If

(
id ⊗ (

mA
1 ,mA

2

))
(ψ) ∈ KC⊗̇(

SA
1 × SA

2

)
,

i.e., if the bipartite state is not steerable by measurements
mA

1 ,mA
2 , then

((
mC

1 ,mC
2

) ⊗ (
mA

1 ,mA
2

))
(ψ) ∈ (

SC
1 × SC

2

)⊗̇(
SA

1 × SA
2

)
.

Proof. Let
(
id ⊗ (

mA
1 ,mA

2

))
(ψ) ∈ KC⊗̇(

SA
1 × SA

2

)
,

then for n ∈ N, i ∈ {1, . . . ,n}, there are 0 � λi � 1, xi ∈ KC

and si ∈ SA
1 × SA

2 ,
∑n

i=1 λi = 1, such that we have

(
id ⊗ (

mA
1 ,mA

2

))
(ψ) =

n∑
i=1

λixi ⊗ si .

We get

((
mC

1 ,mC
2

) ⊗ (
mA

1 ,mA
2

))
(ψ) =

n∑
i=1

λi

(
mC

1 ,mC
2

)
(xi) ⊗ si,

and since we have (mC
1 ,mC

2 )(xi) = (mC
1 (xi),mC

2 (xi)) ∈ SC
1 ×

SC
2 we have
((

mC
1 ,mC

2

) ⊗ (
mA

1 ,mA
2

))
(ψ) ∈ (

SC
1 × SC

2

)⊗̇(
SA

1 × SA
2

)
.

�
Note that the same result would also hold for steering by

the measurements mC
1 ,mC

2 .
One may think that steering is somehow half of Bell

nonlocality, or that it is some middle step towards Bell
nonlocality as even our constructions in Secs. VIII and XI
would point to such a result. We will show that this is not true
in general, as we will provide a counterexample using quantum
channels in Example 9.

XIII. BELL NONLOCALITY OF QUANTUM CHANNELS

Bell nonlocality of quantum measurements is a deeply
studied topic in quantum theory, with several applications
in various device-independent protocols [49–52], randomness
generation and randomness expansion [53,54], and others (for
a recent review on Bell nonlocality see [55]).

Bell nonlocality of quantum channels follows very similar
rules to steering by quantum channels. We will derive results
specific for quantum theory in the same manner as in Sec. X.

Proposition 23. Let ρ ∈ DH⊗H and let 	1
1 : DH →

DH,	1
2 : DH → DH,	2

1 : DH → DH,	2
2 : DH → DH be

channels. The bipartite biconditional state ((	1
1,	

1
2) ⊗

(	2
1,	

2
2))(ρ) is Bell nonlocal only if the bipartite biconditional

state ((id,id) ⊗ (id,id))(ρ) is Bell nonlocal.
Proof. If the bipartite biconditional state ((id,id) ⊗

(id,id))(ρ) is Bell local, then there exist σ ∈ DH⊗H⊗H⊗H such
that

Tr24(σ ) = ρ,

Tr23(σ ) = ρ,

Tr14(σ ) = ρ,

Tr13(σ ) = ρ.

Let

σ̃ = (
	1

1 ⊗ 	1
2 ⊗ 	2

1 ⊗ 	2
2

)
(σ ),

then

Tr24(σ̃ ) = (
	1

1 ⊗ 	2
1

)
(ρ),

Tr23(σ̃ ) = (
	1

1 ⊗ 	2
2

)
(ρ),

Tr14(σ̃ ) = (
	1

2 ⊗ 	2
1

)
(ρ),

Tr13(σ̃ ) = (
	1

2 ⊗ 	2
2

)
(ρ).

�
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Note that again we do not have to replace all of the channels
by the identity channels id, but we may replace only some.

Proposition 24. Let ρ ∈ DH⊗H and let 	1
1 : DH →

DH,	1
2 : DH → DH,	2

1 : DH → DH,	2
2 : DH → DH be

channels, moreover, let 	1
1 = 	U be a unitary channel given

by the unitary matrix U , then the bipartite biconditional state
((	U,	1

2) ⊗ (	2
1,	

2
2))(ρ) is Bell nonlocal if and only if the

bipartite biconditional state ((id,	1
2) ⊗ (	2

1,	
2
2))(ρ) is Bell

nonlocal.
Proof. Using the very same idea as before, if the bipartite

biconditional state ((	U,	1
2) ⊗ (	2

1,	
2
2))(ρ) is Bell local, then

there is σ ∈ DH⊗H⊗H⊗H such that

Tr24(σ ) = (
	U ⊗ 	2

1

)
(ρ),

Tr23(σ ) = (
	U ⊗ 	2

2

)
(ρ),

Tr14(σ ) = (
	1

2 ⊗ 	2
1

)
(ρ),

Tr13(σ ) = (
	1

2 ⊗ 	2
2

)
(ρ).

Let

σ̃ = (	U∗ ⊗ id ⊗ id ⊗ id)(σ ),

then we get

Tr24(σ̃ ) = (
id ⊗ 	2

1

)
(ρ),

Tr23(σ̃ ) = (
id ⊗ 	2

2

)
(ρ),

Tr14(σ̃ ) = (
	1

2 ⊗ 	2
1

)
(ρ),

Tr13(σ̃ ) = (
	1

2 ⊗ 	2
2

)
(ρ).

�
One may obtain similar results if some other of the channels

	1
1,	

1
2,	

2
1,	

2
2 is unitary as well as if more or even all of them

are unitary.
The most iconic and most studied aspects of Bell nonlocal-

ity are the Bell inequalities. We are going to present a version
of CHSH inequality for quantum channels. Assume that
dim(H) = 2 and let |0〉,|1〉 denote any orthonormal basis of
H. We will use the shorthand |00〉 = |0〉 ⊗ |0〉. Let i,j ∈ {1,2}
and let

E
(
	1

i ,	
2
j

) = 〈00|(	1
i ⊗ 	2

j

)
(ρ)|00〉

− 〈01|(	1
i ⊗ 	2

j

)
(ρ)|01〉

− 〈10|(	1
i ⊗ 	2

j

)
(ρ)|10〉

+ 〈11|(	1
i ⊗ 	2

j

)
(ρ)|11〉

= Tr
((

	1
i ⊗ 	2

j

)
(ρ)A

)
,

where

A = |00〉〈00| − |01〉〈01| − |10〉〈10| + |11〉〈11|.
The quantity E(	1

i ,	
2
j ) is to be interpreted as the correlation

between the marginals Tr1((	1
i ⊗ 	2

j )(ρ)) and Tr2((	1
i ⊗

	2
j )(ρ)). Since we have −1 � A � 1 it is straightforward that

we have −1 � E(	1
i ,	

2
j ) � 1. Define a quantity

Xρ = E
(
	1

1,	
2
1

) + E
(
	1

1,	
2
2

) + E
(
	1

2,	
2
1

) − E
(
	1

2,	
2
2

)
,

we will show that Xρ corresponds to the quantity used in CHSH
inequality. It is straightforward to see that −4 � Xρ � 4 is the
algebraic bound on Xρ .

Proposition 25. If the biconditional bipartite state
((	1

1,	
1
2) ⊗ (	2

1,	
2
2))(ρ) is Bell local, then we have −2 �

Xρ � 2.
Proof. If the biconditional bipartite state ((	1

1,	
1
2) ⊗

(	2
1,	

2
2))(ρ) is Bell local then there is σ ∈ DH⊗H⊗H⊗H such

that

Tr24(σ ) = (
	1

1 ⊗ 	2
1

)
(ρ),

Tr23(σ ) = (
	1

1 ⊗ 	2
2

)
(ρ),

Tr14(σ ) = (
	1

2 ⊗ 	2
1

)
(ρ),

Tr13(σ ) = (
	1

2 ⊗ 	2
2

)
(ρ).

This yields

E
(
	1

1,	
2
1

) = Tr
((

	1
1 ⊗ 	2

1

)
(ρ)A

) = Tr(Tr24(σ )A)

= Tr(σ (|0〉〈0| ⊗ 1⊗ |0〉〈0| ⊗ 1

− |0〉〈0| ⊗ 1⊗ |1〉〈1| ⊗ 1

− |1〉〈1| ⊗ 1⊗ |0〉〈0| ⊗ 1

+ |1〉〈1| ⊗ 1⊗ |1〉〈1| ⊗ 1)).

In the same manner, we get

E
(
	1

1,	
2
2

) = Tr(σ (|0〉〈0| ⊗ 1⊗ 1⊗ |0〉〈0|
− |0〉〈0| ⊗ 1⊗ 1⊗ |1〉〈1|
− |1〉〈1| ⊗ 1⊗ 1⊗ |0〉〈0|
+ |1〉〈1| ⊗ 1⊗ 1⊗ |1〉〈1|)),

E
(
	1

2,	
2
1

) = Tr(σ (1⊗ |0〉〈0| ⊗ |0〉〈0| ⊗ 1

− 1⊗ |0〉〈0| ⊗ |1〉〈1| ⊗ 1

− 1⊗ |1〉〈1| ⊗ |0〉〈0| ⊗ 1

+ 1⊗ |1〉〈1| ⊗ |1〉〈1| ⊗ 1)),

and

E
(
	1

2,	
2
2

) = Tr(σ (1⊗ |0〉〈0| ⊗ 1⊗ |0〉〈0|
− 1⊗ |0〉〈0| ⊗ 1⊗ |1〉〈1|
− 1⊗ |1〉〈1| ⊗ 1⊗ |0〉〈0|
+ 1⊗ |1〉〈1| ⊗ 1⊗ |1〉〈1|)).

Together we get

Xρ = 2 Tr(σ (|0000〉〈0000| + |0001〉〈0001| − |0010〉〈0010|
− |0011〉〈0011| + |0100〉〈0100| − |0101〉〈0101|
+ |0110〉〈0110| − |0111〉〈0111| − |1000〉〈1000|
+ |1001〉〈1001| − |1010〉〈1010| + |1011〉〈1011|
− |1100〉〈1100| − |1101〉〈1101| + |1110〉〈1110|
+ |1111〉〈1111|))

that implies −2 � Xρ � 2. �
At this point, one may ask whether there exists an

equivalent of Tsirelson bound [28] for the inequality given
by Proposition 25, or what is the maximum violation of the
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aforementioned inequality. We will show that the Tsirelson
bound 2

√
2 is both reachable and maximum violation by

quantum channels.
Proposition 26. For any state ρ ∈ DH⊗H and any four

channels 	1
1 : DH → DH,	1

2 : DH → DH,	2
1 : DH →

DH,	2
2 : DH → DH we have

Xρ � 2
√

2.

Proof. We define the adjoint channel 	1∗
1 to channel 	1

1 as
the linear map 	1∗

1 : Bh(H) → Bh(H) such that for all σ ∈ DH
and E ∈ Bh(H), 0 � E � 1, we have

Tr
(
	1

1(σ )E
) = Tr

(
σ	1∗

1 (E)
)
.

Since 	1
1 is a channel, we have 0 � 	1∗

1 (E) � 1 and 	1∗
1 (1) =

1. This approach of mapping effects instead of states is called
the Heisenberg picture.

Let i,j ∈ {1,2}, then we have

Tr
((

	1
i ⊗ 	2

j

)
(ρ)|00〉〈00|) = Tr

(
ρ	1∗

i (|0〉〈0|) ⊗ 	2∗
j (|0〉〈0|)).

Denoting

M1
i = 	1∗

i (|0〉〈0|),
M2

j = 	1∗
j (|0〉〈0|),

we see that we have

E
(
	1

i ,	
2
j

) = Tr
(
ρM1

i ⊗ M2
j

) − Tr
(
ρ
(
1− M1

i

) ⊗ M2
j

)

− Tr
(
ρM1

i ⊗ (
1− M2

j

))
+ Tr

(
ρ
(
1− M1

i

) ⊗ (
1− M2

j

))
= E

(
M1

i ,M2
j

)
,

where E(M1
i ,M2

j ) is a correlation for the two-outcome mea-
surements given by the effects M1

i and M2
j . It is a well-known

result [28] that we always have

E
(
M1

1 ,M2
1

) + E
(
M1

1 ,M2
2

) + E
(
M1

2 ,M2
1

) − E
(
M1

2 ,M2
2

)
� 2

√
2.

�
It is very intuitive that the Tsirelson bound, reachable by

measurements, will be also reachable by channels. To prove
this, let M,N ∈ Bh(H), 0 � M � 1, 0 � N � 1, and de-
fine channels 	M : Bh(H) → Bh(H),	N : Bh(H) → Bh(H)
such that for σ ∈ DH we have

	M (σ ) = Tr(σM)|0〉〈0| + Tr(σ (1− M))|1〉〈1|,
	N (σ ) = Tr(σN )|0〉〈0| + Tr(σ (1− N ))|1〉〈1|.

It is easy to verify that the maps 	M,	N are quantum channels
and that they are also measurements as they map the state space
DH to the simplex conv{|0〉〈0|,|1〉〈1|}. Let ρ ∈ DH⊗H, then
we have

Tr((	M ⊗ 	N )(ρ)A) = Tr(ρ(M ⊗ N − (1− M) ⊗ N )

− Tr(ρ(M ⊗ (1− N )))

+ Tr(ρ((1− M) ⊗ (1− N )))

= E(M,N ).

This proves that any set of correlations and any violation
of CHSH inequality reachable by measurements are also
reachable by quantum channels as a violation of the bound
given by Proposition 25.

To generalize the proposed inequality, one may replace
the projectors |0〉〈0| and |1〉〈1| by any pair of effects M,N ∈
Bh(H), 0 � M � 1, 0 � N � 1, and have

A = M ⊗ N − (1− M) ⊗ N − M ⊗ (1− N ) + (1− M)

⊗(1− N ).

From now on, we will consider a special case. Keep dim(H) =
2 and let

|ψ+〉〈ψ+| = 1
2 (|00〉〈00| + |11〉〈00| + |00〉〈11| + |11〉〈11|)

be the maximally entangled state, let U1, U2, V1, V2 be uni-
tary matrices and let 	1

1 = 	U1 ,	
1
2 = 	U2 ,	

2
1 = 	V1 ,	

2
2 =

	V2 be unitary channels given by the respective unitary
matrices. We will consider the bipartite biconditional state
((	U1 ,	U2 ) ⊗ (	V1 ,	V2 ))(|ψ+〉〈ψ+|) and we will show that
the correlations for the given bipartite biconditional state are
of a particular nice form. We have(

	Ui
⊗ 	Vj

)
(|ψ+〉〈ψ+|) = (

id ⊗ 	Vj U
T
i

)
(|ψ+〉〈ψ+|),

where i,j ∈ {1,2} and for UT denotes the transpose of the
matrix U . For the correlation we have

E
(
	Ui

,	Vj

) = Tr
((

id ⊗ 	Vj U
T
i

)
(|ψ+〉〈ψ+|)A)

= 1
2

(|〈0|VjU
T
i |0〉|2 + |〈1|VjU

T
i |1〉|2

− |〈0|VjU
T
i |1〉|2 − |〈1|VjU

T
i |0〉|2). (11)

We will provide an example of a violation of the bound
given by Proposition 25 by incompatible unitary channels.

Example 8. Let dim(H) = 2 and let ϑ ∈ R be a parameter.
Let U1, U2, V1, V2 be unitary matrices given as

U1 = 1√
2

(
1 1
1 −1

)
,

U2 =
(

1 0
0 1

)
,

V1 = 1√
1 + ϑ

(√
ϑ 1

1 −√
ϑ

)
,

V2 = 1√
1 + ϑ

(
1

√
ϑ√

ϑ −1

)
.

Consider the bipartite biconditional state (	U1 ,	U2 ) ⊗
(	V1 ,	V2 )(|ψ+〉〈ψ+|). Using Eq. (11), we can obtain
X|ψ+〉〈ψ+| as a function of ϑ . The function is plotted in Fig. 1,
where it is shown that for certain values of ϑ the bipartite
biconditional state violates the bound given by Proposition 25.

It is also easy to see that the bipartite biconditional state
((id,id) ⊗ (id,id))(|ψ+〉〈ψ+|) does not violate the bound given
by Proposition 25 because all of the correlations are the same,
yet according to Proposition 24 we know that it must be a
Bell nonlocal bipartite biconditional state. This shows that
not all Bell nonlocal bipartite biconditional states violate the
inequality given by Proposition 25.
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FIG. 1. The blue solid line is X|ψ+〉〈ψ+| as a function of the
parameter ϑ ∈ [1,10] when we consider the bipartite biconditional
state (	U1 ,	U2 ) ⊗ (	V1 ,	V2 )(|ψ+〉〈ψ+|) from Example 8. The red
dashed line corresponds to the Tsirelson bound 2

√
2.

One may wonder whether there is or is not a connection
between steering and Bell nonlocality. As we have already
showed in Proposition 22, for measurements Bell nonlocality
implies steering. We will show that for channels the same does
not hold.

Example 9. Let dim(H) = 2. Let ρW ∈ DH⊗H be given as
in Example 7 as a partial trace over the state |W 〉〈W |. We
already know that the state ρW is not steerable by any pair of
channels. Consider the bipartite biconditional state ((id,id) ⊗
(id,id))(ρW ), if it is Bell local, then there must be a state
σ ∈ DH⊗H⊗H⊗H such that

Tr13(σ ) = Tr14(σ ) = Tr23(σ ) = Tr24(σ ) = ρW .

Observe that Tr1(σ ) ∈ DH⊗H⊗H is such that Tr3(Tr1(σ )) =
Tr4(Tr1(σ )) = ρW which implies that, according to our calcu-
lations in Example 7, we must have

Tr1(σ ) = |W 〉〈W |.
According to [56, Lemma 3] this implies that there is a state
ρ ∈ DH such that σ = ρ ⊗ |W 〉〈W |. This implies that we have
Tr23(σ ) = ρ ⊗ 1

3 (2|0〉〈0| + |1〉〈1|) which is clearly a separable
state. This is a contradiction as we should have had Tr23(σ ) =
ρW , which is an entangled state.

XIV. CONCLUSIONS

We have introduced the general definition of compatibility
of channels in general probabilistic theory through the idea of
conditional channels. We have also shown that a naive idea for
a compatibility test leads to a simple and straightforward for-
mulation of steering and Bell nonlocality. These formulations
of steering and Bell nonlocality are different even when we
consider only measurements instead of channels. Throughout
the paper, we have shown that all of our definitions and results
are in correspondence with the known result for measurements

and we have also provided several examples and results about
the introduced concepts in quantum theory.

The paper has opened several questions and areas of
research. For example, a possible area of research would be
to look at the structure of conditional states and conditional
channels and to try to connect them to Bayesian theory.

Concerning the compatibility of channels, one may for-
mulate different notions of degree of (in)compatibility or of
robustness of compatibility in general probabilistic theory and
look at their properties, in a similar way as it was already
done in quantum theory [57]. For quantum channels, one may
wonder which types of channels are compatible. This would
generalize the no broadcasting theorem [56,58] which states
that two unitary channels can not be compatible.

One may also consider our formulations of steering and Bell
nonlocality as a case of the problem of finding a multipartite
state with given marginals. Such problems were studied in
recent years [59,60], but not in the form that would be
applicable to the problems of steering and Bell nonlocality
as incompatibility tests. This opens questions as to whether
one may characterize the structure of the cone QCD and of
other cones of interest in quantum theory. From a geometrical
viewpoint, this question is closely tied to the question of
existence of other Bell inequalities for channels than the one
we presented. Existence and exact form of the generalized Bell
inequalities are also a very interesting possible area of research.

We may also consider the use of steering and Bell
nonlocality of channels in the context of quantum information
theory and quantum communication. Both steering and Bell
nonlocality of measurement were used to formulate quantum
protocols and it is of great interest whether exploiting the
steering and Bell nonlocality of channels may lead to even
better or more useful applications.

One may also try and clarify the lack of connection between
steering and Bell nonlocality of channels. As we have showed
in Example 9, even if two channels can not steer a state, when
applied to both parts of the state the resulting biconditional
bipartite state may be Bell nonlocal. This may even have
interesting applications in quantum theory of information
as so far steering has been considered to lead to one-side
device-independent protocols that were seen as a middle
step between the original protocol and device-independent
protocol.

It may also be interesting to consider the resource theories
of channel incompatibility, of steering by channels, and of Bell
nonlocality of channels. Several similar resource theories were
already constructed (see [61] for a review).
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In quantum theory, the no-information-without-disturbance and no-free-information theorems
express that those observables that do not disturb the measurement of another observable and
those that can be measured jointly with any other observable must be trivial, i.e., coin tossing
observables. We show that in the framework of general probabilistic theories these statements do
not hold in general and continue to completely specify these two classes of observables. In this way,
we obtain characterizations of the probabilistic theories where these statements hold. As a particular
class of state spaces we consider the polygon state spaces, in which we demonstrate our results and
show that while the no-information-without-disturbance principle always holds, the validity of the
no-free-information principle depends on the parity of the number of vertices of the polygons.

I. INTRODUCTION

Quantum theory implies three simple, yet significant and powerful theorems: the no-broadcasting theorem, the
no-information-without-disturbance theorem, and the no-free-information theorem. The no-broadcasting theorem
says that quantum states cannot be copied; the no-information-without-disturbance theorem states that a quantum
observable that can be measured without any disturbance must be trivial, meaning that it does not give any informa-
tion on the input state; and the no-free-information theorem states that a quantum observable that can be measured
jointly with any other observable must be a trivial observable. In other words, there is no free information, in the
sense that a measurement of any non-trivial observable precludes the measurement of some other observable.

Each of the previous three statements can be formulated in the framework of general probabilistic theories (GPTs
for short). In this context we find it better to call them principles instead of theorems as they are not valid in all
probabilistic theories. In particular, the no-broadcasting principle is known to be valid in any non-classical general
probabilistic theory [1, 2]. In this work, we concentrate on the latter two principles and investigate their validity in
the realm of GPTs. The no-information-without-disturbance principle has been shown to hold within GPTs with
some additional assumptions, such as purification [3]; however, the validity of this principle has only been mentioned
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FIG. 1. Summary of the main results.
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in [4] but never fully investigated in all probabilistic theories. The no-free-information principle seems to have not
been investigated at all in any other theory than quantum theory.

Amongst these principles, no-free-information principle is conceptually the weakest, with no-broadcasting the
strongest: If the no-free-information principle is valid in some GPT—that is, for every non-trivial observable there
exists another incompatible with it—then the no-information-without-disturbance principle must also be valid, as
a non-disturbing observable would be compatible with every other observable. Furthermore, if the no-information-
without-disturbance principle is valid and hence no non-trivial observable is non-disturbing, then the no-broadcasting
principle has to hold, otherwise we would be capable of using the broadcasting map to create non-trivial non-disturbing
observables.

We will define three classes of observables, the first one consisting of those observables that always yield a constant
outcome independent of the measured state, the second one consisting of those observables that can be measured
without any disturbance and the third one consisting of those observables that are compatible with any other observ-
able. We will then characterize these classes, enabling us to show that the properties are different in some GPTs. We
will also derive a necessary and sufficient criterion for a GPT to have both the no-information-without-disturbance
principle and no-free-information principle valid be valid. Finally, we demonstrate the difference between the three
principles by analyzing them in polygon state spaces. The main results of our investigation are summarized in Fig. 1.

II. MOTIVATING EXAMPLE

In this section we will present a simple example to motivate our current investigation. A proper mathematical
formulation of the general framework will follow in later sections; in the following example we are going to work with
the set Bh(H) of square self-adjoint matrices over a finite dimensional Hilbert space H. We denote by 1 the identity
matrix and 0 the zero matrix. For A ∈ Bh(H), we write A ≥ 0 if A is positive-semidefinite. Let A,B ∈ Bh(H), then
if A ≥ 0 and Tr(A) = 1, then A is a state and if 0 ≤ B ≤ 1, then B is an effect. We refer the reader to [5] for a more
throughout treatment of states and effects and their operational meanings in quantum theory.

Imagine that we have an imperfect state preparation device that is meant to prepare qubits in a state ρ, but may
malfunction and prepare a qutrit in a state σ. Moreover we assume that the machine malfunctions with a probability
pe, thereby the final state should be a mixture of ρ and σ with probabilities 1 − pe and pe, respectively. This means
that the machine is going to output a state Ψ that should formally be given as Ψ = (1 − pe)ρ + peσ. But how does
one understand the mixture of the 2 × 2 matrix ρ and the 3 × 3 matrix σ? And how does one describe the output
state-space of such a machine?

Qubits are effectively a spin- 1
2

systems and qutrits a spin-1 systems, hence the joint Hilbert space H containing
both representations of the group SU(2) is going to be 5 dimensional and divided into two superselection sectors
[6] of dimensions 2 and 3, corresponding to the qubit and qutrit respectively. The output state Ψ is going to be a
block-diagonal 5 × 5 matrix given as

Ψ = ((1 − pe)ρ 0
0 peσ

) .
Let M be an effect on H, then M is of the form

M = (M1 M3

M∗
3 M2

) ,
where M1, M2, M3 are matrices of corresponding sizes. We have

Tr(ΨM) = Tr((1 − pe)ρM1 (1 − pe)ρM3

peσM
∗
3 peσM2

) = (1 − pe)Tr(ρM1) + peTr(σM2),
hence from the operational viewpoint we may set M3 = 0 without loss of generality.

Let N be an effect given as

N = (1 0
0 0

)
then N and 1 −N form a projective POVM. Moreover, both N and 1 −N commute with all other block-diagonal
effects, hence we conclude that the observable corresponding to the POVM N , 1 −N is compatible with every other
measurement.
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This is hardly a surprise, rather a known property of the superselection sectors. Yet this opens the questions of
whether this is the only case when an observable is compatible with every other observable; whether no-information-
without-disturbance still holds; and whether an observable does not disturb any other observables if it is compatible
with them all.

As we saw in this example, we need to at least describe the set of states containing only block-diagonal matrices.
For this reason we will work in the GPT formalism as it will provide a unified, cleaner and better suited apparatus
for our calculations.

III. PRELIMINARIES

In the GPT framework we assume that a state space is convex as we want to interpret convex combinations as
mixtures of states. To describe observables, we will introduce effects as functions that assign probabilities to states.

A. Structure of general probabilistic theories

A state space S is a compact convex subset of an ordered real finite-dimensional vector space V such that S is a
compact base for a generating positive cone V+ = {x ∈ V ∣x ≥ 0}. Let V∗ denote the dual vector space to V, then the
effect algebra E(S) ⊂ V∗ is the set of linear functionals e ∶ V → R such that 0 ≤ e(x) ≤ 1 for every x ∈ S. The zero and
the unit effects o ∈ E(S) and u ∈ E(S) are the unique effects satisfying o(x) = 0 and u(x) = 1 for all x ∈ S.

The state space can be expressed as

S = {x ∈ V ∣x ≥ 0, u(x) = 1},
i.e. as an intersection of the positive cone V+ and an affine hyperplane determined by the unit effect u on V. Similarly
we can define subnormalised states as

S≤1 = {x ∈ V ∣x ≥ 0, u(x) ≤ 1}.
If dim(aff(S)) = d, we say that the state space S is d-dimensional, and then we can choose V such that dim(V) =
dim(V∗) = d + 1. It follows that the effects can be expressed as linear functionals on V such that

E(S) = {e ∈ V∗ ∣ o ≤ e ≤ u},
where the partial order in the dual space is the dual order defined by the positive dual cone V∗+ = {f ∈ V∗ ∣ f(x) ≥
0 for all x ∈ V+} of V+. In fact E(S) is then just the intersection of the positive dual cone V∗+ and the set u − V∗+ .

We say that a non-zero effect e ∈ E(S) is indecomposable if a decomposition e = e1 +e2 for some effects e1, e2 ∈ E(S)
is possibly only if e1 and e2 are positive scalar multiples of e [7]. The indecomposable effects are exactly the ones that
lie on the extreme rays of the positive dual cone V∗+ .

When dealing with systems composed of several systems we have to prescribe a procedure for how to construct a
joint state space of the composed system. Mathematically, this amounts of specifying a tensor product. We are going
to use a tensor product only in cases where the other state space is classical. Therefore, there is a unique choice
known as the minimal tensor product [8].

Definition 1. Let S1, S2 be state spaces, then their minimal tensor product, denoted as S1⊗̇S2, is given as

S1⊗̇S2 = conv ({x1 ⊗ x2 ∣x1 ∈ S1, x2 ∈ S2}) .
B. Observables and channels

In this section we will introduce the main objects of interest to us - observables, channels and compatibility. We
will begin with observables and their compatibility, and build our way towards channels.

Definition 2. An observable A with a finite outcome set ΩA on a state space S is a mapping A ∶ x → Ax from the
outcome set ΩA to the set of effects E(S) such that ∑x∈ΩA

Ax = u. The set of observables on S is denoted by O(S).
For each A ∈ O(S) we refer to ΩA as the outcome set of A.
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Let A,B ∈ O(S) with respective outcome sets ΩA, ΩB. We say that B is a post-processing of A, denoted by A→ B,
if there is a right-stochastic matrix ν with elements νxy, x ∈ ΩA, y ∈ ΩB, 0 ≤ νxy ≤ 1, ∑y∈ΩB

νxy = 1 such that

By = ∑
x∈ΩA

νxyAx ,

in which case we also write B = ν ○ A. The operational interpretation is straightforward: we have A → B only if we
can obtain the probabilities given by B from the probabilities given by A. The condition ∑y∈ΩB

νxy = 1 follows from∑y∈ΩB
By = u.

Definition 3. A collection of m observables A(1), . . . ,A(m) ∈ O(S) is compatible if there exists an observable

JA(1),...,A(m) ∈ O(S) such that JA(1),...,A(m) → A(i) for all i = 1, . . . ,m. If two observables A and B are compatible
we denote it A ○○ B.

Compatibility of observables and of observables and channels will play a central role in our calculations.

Definition 4. Let S1, S2 be a state spaces. An operation is an affine map Ψ ∶ S1 → S≤1
2 . A channel is an affine map

Φ ∶ S1 → S2. The set of channels from S1 to S2 is denoted by C(S1,S2) and in the special case where S1 = S2 ≡ S we
denote it by C(S).

In quantum theory we also require channels to be completely positive, but we omit this within GPTs as in general
it is problematic to specify what complete positivity means.

Let S be a state space and let A ∈ O(S) with an outcome set ΩA of n elements. We can identify the points of ΩA with
the extreme points of a simplex, which allows us to form convex combinations of the points of ΩA. Moreover we will
denote this simplex P(ΩA) and its extreme points δ1, . . . , δn as they correspond to classical measures on ΩA supported
on a single point. Now we can see the observable A as a channel A ∶ S → P(ΩA). Furthermore, a post-processing ν
can be seen as a channel mapping the classical state spaces corresponding to outcome sets of observables.

As mentioned above, similarly to compatibility of measurements, we can introduce the compatibility of a measure-
ment and a channel. The central role is going to be played by a generalization of partial trace, which is as follows:
let S1, S2 be state spaces and let x ∈ S1⊗̇S2, then by definition we have x = ∑ni=1 λix

1
i ⊗ x2

i for some x1
i ∈ S1, x2

i ∈ S2,
λi ≥ 0 for i ∈ {1, . . . , n} and ∑ni=1 λi = 1. We then define the maps u1 ∶ S1⊗̇S2 → S2 and u2 ∶ S1⊗̇S2 → S1 as

u1(x) = n∑
i=1

λiu(x1
i )x2

i = n∑
i=1

λix
2
i ,

u2(x) = n∑
i=1

λiu(x2
i )x1

i = n∑
i=1

λix
1
i .

The maps u1, u2 are direct generalizations of partial traces. The definitions may be easily generalized also for entangled
states but this is out of the scope of what we will need in future calculations.

Definition 5. A channel Φ ∶ S → S is compatible with an observable A ∈ O(S) with outcome set ΩA if and only if

there is a channel Φ̃ ∶ S → S⊗̇P(ΩA) such that for all x ∈ S we have

Φ(x) = (u2 ○ Φ̃)(x),
A(x) = (u1 ○ Φ̃)(x),

where ○ denotes the composition of maps.

If the channel Φ were an observable, we would obtain a definition of compatibility of observables which can be
shown to be equivalent to Def. 3; see [9]. In a similar fashion one may also formulate the definition of compatibility
of channels [10].

We will start with a simple lemma for the compatibility of an observable and a channel.

Lemma 1. A channel Φ ∈ C(S) and an n-outcome observable A ∈ O(S) are compatible if and only if for i ∈ {1, . . . , n}
there are operations Φi ∶ S → V+ such that

Φ = n∑
i=1

Φi, (1)

Ai = u ○Φi. (2)
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Proof. Let ΩA = {δ1, . . . , δn} denote the outcome space with n points. Moreover let b1, . . . , bn denote the dual base of
affine functions P(ΩA) → R, such that bi(δj) = 1 if and only if i = j. If Φ and A are compatible, then there exists a

channel Φ̃ ∶ S → S⊗̇P(ΩA) such that Φ = u2 ○ Φ̃ and A = u1 ○ Φ̃.

In general, we have Φ̃ ∈ V∗ ⊗ V ⊗P(ΩA), i.e.

Φ̃ = n∑
i=1

∑
j∈J fij ⊗ ψj ⊗ δi

for some fij ∈ V∗ and ψj ∈ V and for some index j from a finite index set J . Denote Φi = ∑j∈J fij ⊗ψj and notice that
Φi are linear maps V → V.

Since Φ̃ must be a channel then bi ○ Φ̃ ∶ S → S must also be a positive map and since bi ○ Φ̃ = Φi, we see that Φi are
positive maps. Since Φ̃ is a joint channel of Φ and A we must have

Φ = u2 ○ Φ̃ = n∑
i=1

Φi,

A = u1 ○ Φ̃ = n∑
i=1

(u ○Φi)⊗ δi.
∑ni=1(u ○Φi)(x) = 1 for all x ∈ S implies that Φi are operations.

If there exist operations Φi satisfying (1) and (2), then define Φ̃ = ∑ni=1 Φi ⊗ δi. Positivity and normalisation of Φ̃

follows from the positivity of Φi and (2). The fact that Φ̃ is a joint channel of Φ and A follows from (1) and (2).

IV. FORMULATION OF THE TWO PRINCIPLES

The purpose of measuring an observable is to learn something about the input state via the obtained measurement
outcome probability distribution. An observable is called trivial if it cannot provide any information on input states.
More precisely, this means that a trivial observable T assigns the same measurement outcome probability distribution
to all states, i.e., T = pu for some probability distribution p on ΩT. Physically speaking, a measurement of a trivial
observable can be implemented simply by rolling a dice and producing a probability distribution independently of the
input state. We denote by T1 the set of all trivial observables, i.e.,

T1 = {T ∈ O(S) ∣Tx(s) = Tx(s′) ∀x ∈ ΩT, ∀s, s′ ∈ S}= {T ∈ O(S) ∣∃p ∈ P(ΩT) ∶ Tx = p(x)u ∀x ∈ ΩT} .
From the banal structure of trivial observables it follows that any such observable is compatible with every other

observable. Formally, if T = pu is a trivial observable and A is some other observable, then we can define an observable
JT,A with effects JT,A(x, y) = p(x)Ay, and we have ∑x JT,A(x, y) = Ay and ∑y JT,A(x, y) = Tx.

Furthermore, a trivial observable is compatible with every channel. Namely, if T = pu is a trivial observable and Φ
is a channel, then we can define operations Φi ∶ S → V+ as Φi = p(i)Φ for all i ∈ ΩT. Clearly, then ∑i∈ΩT

Φi = Φ and(u ○Φi)(x) = p(i) = Ti(x) for all i ∈ ΩT so that by Lemma 1 we conclude that T and Φ are compatible.
These two features of trivial observables raise natural questions: are there observables other than trivial ones that

have these features? If so, what is the structure of such observables? As we have seen in Sec. II, the answer to the
first question is affirmative, hence the second question urges an investigation.

To properly analyze the two mentioned features, we consider them as independent properties that determine a
subclass of observables. Hence, for a state space S, we define the following subsets of observables:

T2 = {T ∈ O(S) ∣T ○○ Φ ∀Φ ∈ C(S)} ,T3 = {T ∈ O(S) ∣T ○○ A ∀A ∈ O(S)} .
If an observable T is compatible with the identity channel id, then T is compatible with any channel Φ ∈ C(S).

Namely, suppose that T is compatible with id, so there exist operations Ψi ∶ S → V+ such that ∑i∈ΩT
Ψi = id and

u ○Ψi = Ti. Then we can define a new set of operations as Φ ○Ψi, and these operations give ∑i∈ΩT
Φ ○Ψi = Φ ○ id = Φ

and u ○ (Φ ○Ψi) = (u ○Φ) ○Φi = u ○Φi = Ti. Therefore, we can concisely write

T2 = {T ∈ O(S) ∣T ○○ id} .
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We conclude that T2 is the set of observables that can be measured without causing any disturbance.
Now, suppose that T ∈ T2, so there exist operations Φi ∶ S → V+ such that ∑i∈ΩT

Φi = id and u○Φi = Ti for all i ∈ ΩT.
If A ∈ O(S), we define a joint observable G of A and T by Gij = Aj ○Φi for all i ∈ ΩT and j ∈ ΩA. We then see that

∑
j

Gij =∑
j

(Aj ○Φi) = ⎛⎝∑j Aj
⎞⎠ ○Φi = u ○Φi = Ti,

∑
i

Gij =∑
i

(Aj ○Φi) = Aj ○ (∑
i

Φi) = Aj ○ id = Aj

for all i ∈ ΩT and j ∈ ΩA. Thus, A and T are compatible, and since A was an arbitrary observable, it follows that
T ∈ T3. We conclude that

T1 ⊆ T2 ⊆ T3 .

These three sets and the previous chain of inclusion allows us to give a simple and concise formulation of the two prin-
ciples: The no-information-without-disturbance principle means that T2 = T1, while the no-free-information principle
means that T3 = T1.

V. CHARACTERIZATION OF T2
The aim of this section is to characterize non-disturbing observables and the structure of the state spaces they

may exist on. We will have to introduce additional mathematical results to provide the full description of such state
spaces.

A. Direct sum of state spaces

We will introduce a direct sum of state spaces as a generalized description of using only block-diagonal quantum
states. Our aim is to mathematically formalize the operational idea of having an ordered pair of weighted states from
two different state spaces.

Definition 6. Let V1, V2 be real finite-dimensional vector spaces and let S1 ⊂ V1 and S2 ⊂ V2 be state spaces. We
define a state space S1 ⊕ S2 ⊂ V1 × V2 as the set of ordered and weighted pairs of states from S1 and S2, i.e.,

S1 ⊕ S2 = {(λx1, (1 − λ)x2) ∣x1 ∈ S1, x2 ∈ S2, λ ∈ [0,1]}.
Given state spaces S1, . . . ,Sn one can define S1 ⊕ . . . ⊕ Sn in a similar fashion as a subset of V1 × . . .Vn, i.e., one

would have

S1 ⊕⋯⊕ Sn = {(λ1x1, . . . , λnxn) ∣xi ∈ Si, λi ≥ 0,∀i ∈ {1, . . . , n}, n∑
i=1

λi = 1}.
In what follows we will present a few basic results about S1 ⊕ S2. We will limit only to direct sum of two state

spaces for the sake of not drowning in a sea of symbols, but it will be straightforward to see that all of the results
hold for any finite direct sum as well.

Proposition 1. E(S1 ⊕ S2) = E(S1) × E(S2), where E(S1) × E(S2) = {(e1, e2) ∣ e1 ∈ E(S1), e2 ∈ E(S2)}.

Proof. S1⊕S2 ⊂ V1 ×V2 so we must have E(S1⊕S2) ⊂ V∗1 ×V∗2 . Let (e1, e2) ∈ V∗1 ×V∗2 and let (λx1, (1−λ)x2) ∈ S1⊕S2,
then from

(e1, e2)((λx1, (1 − λ)x2)) = λe1(x1) + (1 − λ)e2(x2) (3)

it follows that E(S1) × E(S2) ⊂ E(S1 ⊕ S2). Assuming (e1, e2) ∈ E(S1 ⊕ S2) and setting λ = 0 and λ = 1 in (3) we get
e1 ∈ E(S1) and e2 ∈ E(S2).

It follows that if A ∈ O(S1 ⊕ S2), then we have Ai = (A1
i ,A

2
i ) for some A1 ∈ O(S1), A2 ∈ O(S2).

Proposition 2. Let A,B ∈ O(S1 ⊕ S2), such that Ai = (A1
i ,A

2
i ), Bj = (B1

j ,B
2
j), then A ○○ B if and only if A1 ○○ B1 and

A2 ○○ B2.
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Proof. If A1 ○○ B1 and A2 ○○ B2 then A ○○ B as we can form the joint observable as (JA,B)k = ((JA1,B1)k, (JA2,B2)k) and
apply the respective post-processings to the respective observables, hence A ○○ B. Note that to make the observables
have the same number of outcomes, we can always pad out one with zero effects corresponding to some extra outcomes
that never happen.

If A ○○ B, then by restricting the state space only to states of the form (x1,0) ∈ S1⊕S2, where x1 ∈ S1 it follows that
A1 ○○ B1 are compatible as we can obtain JA1,B1 from JA,B. A2 ○○ B2 follows in the same manner.

This explains our motivational example in Sec. II. One can also prove a similar result for the compatibility of an
observable and a channel, but we will leave that for the next section, where we will investigate the conditions for the
compatibility of an observable and the identity channel id ∶ S → S, where direct sums of state spaces will play a role.

This last result will help us identify the direct sum structure of a state space.

Proposition 3. Let S be a state space and let S1,S2 ⊂ S be convex, closed, conv (S1 ∪ S2) = S and for every x ∈ S
there are unique x1 ∈ S1, x2 ∈ S2 and λ ∈ [0,1] such that x = λx1 + (1 − λ)x2. Then S = S1 ⊕ S2.

Proof. Let V1 and V2 denote the subspaces of V generated by S1 and S2 respectively. Define map P ∶ S → V1 × V2

given for x ∈ S, x = λx1+(1−λ)x2, x1 ∈ S1, x2 ∈ S2 as P (x) = (λx1, (1−λ)x2). It follows that we have P ∶ S → S1⊕S2,
moreover one can easily see that P is an affine isomorphism. It follows that S is affinely isomorphic to S1 ⊕ S2, the
result follows by simply omitting the isomorphism.

B. Compatibility of an observable and the identity channel

We are going to derive conditions for an observable to be compatible with the identity channel id ∶ S → S. Our
results will be similar to the results mentioned in [4, 11], but we will approach the problem from a different angle and
with a different objective in mind.

Lemma 2. An observable A with an n-outcome space ΩA is compatible with the identity channel id ∶ S → S if and
only if there is a channel Φ ∶ S → S⊗̇P(ΩA) such that for every extreme point y ∈ S we have

Φ(y) = n∑
i=1

Ai(y)y ⊗ δi. (4)

Proof. Assume that an observable A is compatible with id, then due to Lemma 1 we must have operations Φ1, . . . ,Φn
such that id = ∑ni=1 Φi and Ai = u ○ Φi. To prove our claim we will use the defining property of extreme points. We
have

y = id(y) =∑
i=1

Φi(y)
that implies Φi(y) = λi(y)y, where λi(y) ∈ [0,1] may in general depend on i and y. From Ai = u ○ Φi we obtain
λi(y) = Ai(y). For the joint channel Φ of id and A we have

Φ(y) = n∑
i=1

Φi(y)⊗ δi = n∑
i=1

Ai(y)y ⊗ δi.
Now assume that for a channel Φ ∶ S → S⊗̇P(ΩA) the equation (4) holds. For every extreme point y ∈ S we have

(u2 ○Φ)(y) = n∑
i=1

Ai(y)y = y,
(u1 ○Φ)(y) = n∑

i=1

Ai(y)⊗ δi = A(y).
Since this holds for every extreme point of S it follows that Φ is a joint channel of A and id.

Proposition 4. Observable A is compatible with id if and only if there is a set of affinely independent extreme points
of S, denote them xj, j ∈ {1, . . . , d} such that S ⊂ aff ({x1, . . . , xd}) and for every extreme point y ∈ S, y = ∑dj=1 αjxj
it holds that

αj(Ai(xj) −Ai(y)) = 0. (5)
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Proof. Assume that an observable A is compatible with id and let x1, . . . , xd ∈ S be a set of affinely independent
extreme points, such that S ⊂ aff ({x1, . . . , xd}). Let y ∈ S be an extreme point, then y = ∑dj=1 αjxj , where ∑dj=1 αj = 1.

According to Lemma 2 there is a channel Φ such that (4) holds. Plugging in the expression y = ∑dj=1 αjxj we obtain

Φ(y) = d∑
j=1

αjΦ(xj) = d∑
j=1

αj
n∑
i=1

Ai(xj)xj ⊗ δi
which implies

n∑
i=1

Ai(y)y ⊗ δi = d∑
j=1

n∑
i=1

αjAi(xj)xj ⊗ δi.
Since δ1, . . . , δn are linearly independent we must have Ai(y)y = ∑dj=1 αjAi(xj)xj which yields

d∑
j=1

αj (Ai(xj) −Ai(y))xj = 0.

Eq. (5) follows by affine independence of x1, . . . , xd.
Assume that (5) holds for an observable A and define a map Φ ∶ S → S⊗̇P(ΩA) given for j ∈ {1, . . . , d} as

Φ(xj) = n∑
i=1

Ai(xj)xj ⊗ δi
and extended by affinity to all of S. Let y ∈ S be an extreme point, then we have y = ∑dj=1 αjxj , ∑dj=1 αj = 1 and

Φ(y) = d∑
j=1

αjΦ(xj) = d∑
j=1

αj
n∑
i=1

Ai(xj)xj ⊗ δi = d∑
j=1

n∑
i=1

αjAi(y)xj ⊗ δi = n∑
i=1

Ai(y)y ⊗ δi
where we have used (5) in the third step. By lemma 2 it follows that A is compatible with id.

Note that if S is a simplex, then the set {x1, . . . , xd} is unique and contains all extreme points of S, hence the
requirement of Prop. 4 is trivially satisfied.

It is important to note that Prop. 4 provides a condition on the effects Ai, not on A as a whole. Therefore it will
be interesting to investigate the set of effects that satisfy the condition (5).

Definition 7. We denote ET 2 set of effects on a state space S that satisfy the condition (5), i.e. f ∈ ET 2 if there
is some set {x1, . . . , xd} of affinely independent extreme points of S such that S ⊂ aff ({x1, . . . , xd}) and for every

extreme point y ∈ S, y = ∑dj=1 αjxj it holds that

αj(f(xj) − f(y)) = 0. (6)

The following is a straightforward.

Lemma 3. Let f, g ∈ ET 2, 0 < λ ≤ 1 and 0 ≤ λ′ ≤ 1, then λf ∈ E(S) if and only if f ∈ ET 2, f + g ∈ E(S) if and only if
f + g ∈ ET 2 and λ′f + (1 − λ′)g ∈ ET 2.

Proof. λf ∈ ET 2 and f + g ∈ ET 2 follow immediately from linearity of (6). Convexity of ET 2 follows.

Proposition 5. Let 0 < λ ≤ 1 and 0 ≤ µ ≤ 1, then f ∈ ET 2 if and only if λf + (1 − λ)µu ∈ ET 2.

Proof. If f ∈ ET 2 then λf + (1 − λ)µu ∈ ET 2 follows by Lemma 3. If λf + (1 − λ)µu ∈ ET 2, then

αj((λf + (1 − λ)µ)(xj) − (λf + (1 − λ)µ)(y)) = 0

implies αj(f(xj) − f(y)) = 0.

The result of Prop. 5 is non-trivial. As we will see, there are observables that are compatible with all other
observables because they are “noisy enough”. But according to Prop. 5 this is not the case for compatibility with
the identity channel id. Loosely speaking Prop. 5 together with the next result show that the structure of T2 is more
like T1, than T3 in the sense that observables in T2 are in some sense classical; such as was the case in Sec. II.



9

Corollary 1. Observable A ∈ T2 if and only if Ai ∈ ET 2 for all i.

Proof. Follows from Prop. 4.

Theorem 1. f ∈ ET 2 if and only if S = ⊕Nk=1Sk and f is constant on each Sk.

Proof. If S is a simplex, then there is only one set {x1, . . . , xd} of affinely independent points and we have S = ⊕dj=1xj .
The claim follows.

Let x1, . . . , xd be a set of affinely independent extreme points of S and let y ∈ S be an extreme point, then we have
y = ∑dj=1 αjxj , ∑dj=1 αj = 1. Assume that αj′ ≠ 0 and αj′′ ≠ 0 for some j′, j′′ ∈ {1, . . . , d}, which holds whenever S is
not a simplex. Eq. (6) implies f(xj′) = f(y) and f(xj′′) = f(y), which gives f(xj′) = f(xj′′).

Denote Sc = conv ({z ∈ S ∶ f(z) = c, z is extreme}). We have just proved that that there is only finite number of the
sets Sc, Sc ⊂ aff ({xj ∶ f(xj) = c}).

Let z ∈ S, then we have already proved that we have

z = ∑
c∈[0,1]λcyc, (7)

where 0 ≤ λc ≤ 1, ∑c∈[0,1] λc = 1 and yc ∈ Sc. Note that yc is not necessarily an extreme point of S. We will show that
the decomposition (7) is unique. Assume there is another decomposition z = ∑c∈[0,1] λ′cy′c, where again 0 ≤ λ′c ≤ 1,∑c∈[0,1] λ′c = 1 and y′c ∈ Sc. Moreover assume that λc′ ≠ 0, then from ∑c∈[0,1] λcyc = ∑c∈[0,1] λ′cy′c we have

yc′ = 1

λc′
⎛⎝ ∑
c∈[0,1]λ

′
cy

′
c − ∑

c∈[0,1]∖{c′}λcyc
⎞⎠ .

We can decompose yc′ = ∑nk=1 µkyc′,k, where 0 ≤ µk ≤ 1, ∑nk=1 µk = 1 and yc′,k are extreme points of Sc′ . Moreover
assume that µk′ ≠ 0, then we have

yc′,k′ = 1

µk′
⎛⎝ 1

λc′
⎛⎝ ∑
c∈[0,1]λ

′
cy

′
c − ∑

c∈[0,1]∖{c′}λcyc
⎞⎠ −

n∑
k=1,k≠k′ µkyc′,k

⎞⎠ .
It follows that the right-hand side must be an affine combination of xj , j ∈ {1, . . . , n} such that f(xj) = c′. This
implies that for c ≠ c′ we must have λcyc = λ′cy′c as otherwise the aforementioned result would be violated. We get

yc′,k′ = 1

µk′
⎛⎝λ

′
c′
λc′

y′c′ − n∑
k=1,k≠k′ µkyc′,k

⎞⎠ .
It follows that

yc′ = λ′c′
λc′

y′c′ ,

hence the two decompositions of z are the same. The result follows from Prop. 3.

Using Thm. 1 we can easily characterize all two-dimensional state spaces that have observables compatible with the
identity channel, i.e. that have information without disturbance. Remember that if a state space is two-dimensional,
then dim(V) = 3 where V is the vector space containing the cone V+ which has the base S.

Corollary 2. Let dim(V) = 3, then S = S1 ⊕ S2 if and only if S is the triangle state space.

Proof. Assume that S = S1 ⊕ S2, then V = V1 × V2, where V1, V2 are the vector spaces that contain S1 and S2

respectively. This implies dim(V1) + dim(V2) = dim(V) = 3 and we can assume that dim(V1) = 1, dim(V2) = 2. This
implies that S1 contains only one point and S2 is a line segment, i.e. it has two extreme points. It then follows thatS must have three extreme points, hence it is a triangle state space, which is a simplex.

In a similar fashion one can show that every three-dimensional state space that has information without disturbance
is pyramid shaped, where the base of the pyramid can be any two-dimensional state space.
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VI. CHARACTERIZATION OF T3
A. Simulability of observables

Simulation of observables is a method to produce a new observable from a given collection of observables by a
classical procedure, that is, by mixing measurement settings and post-processing the outcome data [12–15]. For a
subset B ⊆ O(S), we denote by sim(B) the set of observables that can be simulated by using the observables fromB, i.e., A ∈ sim(B) if there exists a probability distribution p, a finite collection of post-processing matrices ν(i) and

observables B(i) ∈ B such that

A =∑
i

pi (ν(i) ○B(i)) .
We will also denote sim(B) ≡ sim({B}). Clearly,

sim(B) = {A ∈ O(S) ∶ B→ A} .
We recall from [14] that an observable A is called simulation irreducible if for any subset B ⊂ O, we have A ∈

sim(B) only if there is B ∈ B such that A ∈ sim(B) and B ∈ sim(A). Thus, a simulation irreducible observable can
only be simulated by (essentially) itself. Equivalently, an observable is simulation irreducible if and only if it has
indecomposable effects and is post-processing equivalent with an extreme observable. We denote by Oirr(S) the set
of simulation irreducible observables. It was shown in [14] that for every observable there exists a finite collection of
simulation irreducible observables from which it can be simulated.

It is worth mentioning that simulation irreducible observables are always incompatible, and in fact, a state space
is non-classical if and only if there exists at least two inequivalent simulation irreducible observables [14].

B. Intersections of simulation sets

A trivial observable can be simulated by any other observable, and therefore

T1 = ⋂
B∈O(S) sim(B) . (8)

The following stronger statement is less obvious, although not too surprising.

Proposition 6.

T1 = ⋂
B∈O(S)∖T1 sim(B). (9)

Proof. Since T1 ⊆ ⋂B∈O(S) sim(B), it is clear that T1 ⊆ ⋂B∈O(S)∖T1 sim(B). On the other hand, suppose that the
inclusion is strict so that (w.l.o.g.) there exist a dichotomic observable T ∈ ⋂B∈O(S)∖T1 sim(B) such that T ∉ T1. This
means that the effects T+ and T− are not proportional to the unit effect u so that especially T+ and u are linearly
independent.

We take λ, q ∈ (0,1) and define another dichotomic observable A by A = λT + (1 − λ)Q, where Q ∈ T1 is defined as
Q+ = qu and Q− = (1 − q)u. Since λ ≠ 0 and T ∉ T1, we have that A ∉ T1. Hence, by the definition of T we have that
T ∈ sim(A), i.e. there exists two real numbers ν1, ν2 ∈ [0,1] such that T+ = ν1A+ + ν2A−. When we expand A+ and A−,
we find that

T+ = ν1(λT+ + (1 − λ)qu) + ν2(λT− + (1 − λ)(1 − q)u)= λ(ν1 − ν2)T+ + (1 − λ)(ν1 − ν2)qu + ν2u,

where on the second line we have used the fact that T− = u−T+. From the linear independence of u and T+ it follows
that we must have λ(ν1 − ν2) = 1, which is a contradiction since 0 < λ < 1 and ν1 − ν2 ≤ 1.

The equations (8) and (9) make one to wonder if the set O(S) ∖ T1 can still be shrunk without altering the
intersection property. Remarkably, taking Oirr(S) instead of O(S) ∖ T1 changes the intersection, and leads to the
following characterization for the set T3.
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Proposition 7.

T3 = ⋂
B∈Oirr(S) sim(B) . (10)

Proof. Let first T ∈ T3. Since T is compatible with every other observable, it is in particular compatible with every
simulation irreducible observable. Thus, for every B ∈ Oirr(S) there exists GB ∈ O(S) such that {B,T} ⊆ sim(GB).
Since B is simulation irreducible it follows from the definition that B↔ GB so that sim(B) = sim(GB). Thus, T ∈ sim(B)
for all B ∈ Oirr(S).

Now let A ∈ ⋂B∈Oirr(S) sim(B) so that A ∈ sim(B) for all B ∈ Oirr(S). We must show that A is compatible with
every other observable. Thus, let C ∈ O(S). For C there exists a finite set of simulation irreducible observablesB = {B(i)}ni=1 such that C ∈ sim(B). Thus, there exists a probability distribution (pi)ni=1 and a post-processing
ν ∶ {1, . . . , n} ×ΩB → ΩC such that

Cy =∑
i,x

piν(i,x)yB(i)
x (11)

for all y ∈ ΩC. If we denote by B̃ the (generalized) mixture observable with outcomes set {1, . . . , n} ×ΩB defined by

B̃(i,x) = piB(i)
x for all i ∈ {1, . . . , n} and x ∈ ΩB, we see that actually Cy = (ν ○ B̃)y for all y ∈ ΩC so that C ∈ sim(B̃).

Since A ∈ sim(B) for all B ∈ Oirr(S), we have that A ∈ sim(B(i)) for all i = 1, . . . , n. Thus, there exists post-

processings µ(i) ∶ ΩB → ΩA such that A = µ(i) ○ B(i) for all i = 1, . . . , n. If we use the same probability distribution(pi)i as before, we have that for all z ∈ ΩA

Az =∑
i

piAz =∑
i

pi∑
x

µ(i)
xzB

(i)
x =∑

i,x

µ(i,x)zpiB(i)
x = (µ ○ B̃)z,

where we have defined a new post-processing µ ∶ {1, . . . , n} × ΩB → ΩA by setting µ(i,x)z = µ(i)
xz for all i ∈ {1, . . . , n},

x ∈ ΩB and z ∈ ΩA. Hence, also A ∈ sim(B̃) so that A and C are compatible.

As was shown in Prop. 7, the observables that are compatible with every other observable are exactly those that can
be post-processed from every simulation irreducible observable. However, we note that it is enough to consider only
post-processing inequivalent simulation irreducible observables since two observables B and B′ are post-processing
equivalent, B ↔ B′, if and only if sim(B) = sim(B′). Thus, when we consider the intersection of the simulation sets
of simulation irreducible observables, we only need to select some representative for each post-processing equivalence
class.

The natural choice for the representative is to take the extreme observable with pairwise linearly independent
effects: it has linearly independent indecomposable effects with the minimal number of outcomes in the respective
post-processing equivalence class. It was shown [14] that such extreme observable exists in every equivalence class
for simulation irreducible observables. We denote the set of extreme simulation irreducible observables by Oextirr (S) so
that

T3 = ⋂
B∈Oirr(S) sim(B) = ⋂

B∈Oextirr (S)
sim(B).

Corollary 3. An observable A ∈ O(S) on a state space S is included in T3 if and only if

Ay ∈ ⋂
B∈Oextirr (S)

cone ({Bx}x∈ΩB
) ∀y ∈ ΩA. (12)

Proof. Let first A ∈ T3. By Prop. 7 for all B ∈ Oextirr (S) there exists a post-processing νB such that A = νB ○B, i.e.,

Ay = ∑
x∈ΩB

νBxyBx (13)

for all y ∈ ΩA. Since νBxy ≥ 0 for all x ∈ ΩB, y ∈ ΩA for all B ∈ Oextirr (S), we have that

Ay ∈ cone ({Bx}x∈ΩB
) (14)

for all B ∈ Oextirr (S) for all y ∈ ΩA, which proves the necessity part of the claim.
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FIG. 2. The blue solid line is the boundary of the state space S used in the example. The black dotted line shows that S can
be considered as a subset of the simplex S3.

Then let Eq. (12) hold. Thus, for each B ∈ Oextirr (S) there exists positive numbers µB
xy ≥ 0 such that

Ay = ∑
x∈ΩB

µB
xyBx

for all y ∈ ΩA. From the normalization of observables A and B it follows that

∑
x∈ΩB

Bx = u = ∑
y∈ΩA

Ay = ∑
x∈ΩB

⎛⎝ ∑y∈ΩA

µB
xy

⎞⎠Bx. (15)

Since each B ∈ Oextirr (S), we have that each B consists of linearly independent effects Bx [14], so that ∑y∈ΩA
µB
xy = 1 for

all x ∈ ΩB. Thus, we can define post-processings µB for each B ∈ Oextirr (S) with elements µB
xy so that A ∈ sim(B) for all

B ∈ Oextirr (S).
C. Example showing that T2 ≠ T3

We will present an example of a two-dimensional state space S, such that there is an observable A ∈ O(S) with
A ∈ T3 but A ∉ T2.

Let

S = conv
⎛⎜⎝
⎛⎜⎝

0
0
1

⎞⎟⎠ ,
⎛⎜⎝

0.5
0
1

⎞⎟⎠ ,
⎛⎜⎝

0.5
0.5
1

⎞⎟⎠ ,
⎛⎜⎝

1
0
1

⎞⎟⎠
⎞⎟⎠ ,

where the z-coordinate is used to identify S with a base of a cone. Let

S3 = conv
⎛⎜⎝
⎛⎜⎝

0
0
1

⎞⎟⎠ ,
⎛⎜⎝

0
1
1

⎞⎟⎠ ,
⎛⎜⎝

1
0
1

⎞⎟⎠
⎞⎟⎠

be a simpex, then we have S ⊂ S3 as shown in Fig. 2.
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1.0

1.2

0

u

ξ1

ξ2
ξ3u− ξ1

u− ξ2

u− ξ3
x

extreme rays

effect algebra

FIG. 3. The effect algebra E(S) used in the example. The black lines represent the wireframe model of E(S), the blue lines are
the extreme rays of the cone of positive functions and the red dots denote the effects that we are using in the example (with
ξ1 = y).

Let us define functionals x, y, u given as

x = ⎛⎜⎝
1
0
0

⎞⎟⎠ , y = ⎛⎜⎝
0
1
0

⎞⎟⎠ , u = ⎛⎜⎝
0
0
1

⎞⎟⎠ .
The points are shown in Fig. 3.

According to Prop. 16 from appendix A there are 4 indecomposable effects corresponding to the 4 maximal faces
of S. They are ξ1, ξ2, ξ3 and u − ξ3, where

ξ1 = y, ξ2 = u − x − y, ξ3 = u − 2x.

It was shown in [14, Corollary 1] that simulation irreducible observables must consists of indecomposable effects.
We are going to find all simulation irreducible observables on S as we know that A ∈ T3 if and only if A is simulable
by every simulation irreducible observable; see Prop. 7.

Assume that there would be a simulation irreducible observable with the effects α1ξ1, α2ξ2, α3ξ3 and α′3(u − ξ3),
where α1, α2, α3, α

′
3 ∈ R, then we must have

α1ξ1 + α2ξ2 + α3ξ3 + α′3(u − ξ3) = u
which yields

−α2 − 2α3 + 2α′3 = 0,

α1 − α2 = 0,

α2 + α3 = 1.

Since the effects of simulation irreducible observables must be linearly independent, we know that at least one of the
coefficients must be equal to zero.
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Assuming α1 = 0, we get α2 = 0 and α3 = α′3 = 1 and we obtain a dichotomic observable B with effects

B1 = ξ3,
B2 = u − ξ3.

Assuming α2 = 0 yields α1 = 0 and α3 = α′3 = 1, i.e. the same observable B. Assuming α3 = 0 gives α1 = α2 = 1 and
α′3 = 1

2
and gives us a three-outcome observable C with effects

C1 = ξ1,
C2 = ξ2,
C3 = x.

Finally assuming α′3 = 0 leads to a contradiction.
Let A be a dichotomic observable given as

A1 = x,
A2 = u − x.

Note that we have x = 1
2
(u − ξ3), which shows that A is simulable by B and we have x = u − ξ1 − ξ2, which shows that

A is simulable by C. This shows that A ∈ T3.
We are going to use Prop. 5 to see that A ∉ T2. Assume that A ∈ T2, then A1 ∈ ET 2, which by Prop. 5 implies

also u − ξ3 ∈ ET 2 as u − ξ3 = 2x. This would imply that B would be compatible with every other observable, but it is
straightforward to see that B is incompatible with C as they are the only two simulation irreducible observables and
if they would be compatible, then all of the observables on S would be compatible. This would in turn yield that S
would have to be simplex [16] which it clearly is not.

An insight into how we obtained this example is provided by the simplex S3: ξ1, ξ2 and x are effects on the simplex
S3 so that the compatibility of A and C follows. Moreover, the fact that u − ξ3 = 2x ≥ x gives the compatibility of A
and B.

VII. STATE SPACES SATISFYING T1 = T2 = T3
Next we will consider conditions under which the no-information-without-disturbance principle (T2 = T1) and the

no-free-information principle (T3 = T1) hold and when they do not. First we note that, as was mentioned earlier, in
general we have that T1 ⊆ T2 ⊆ T3 so that if the no-free-information principle holds, and therefore we have that T3 = T1,
it follows that also T2 = T1 so that the no-information-without-disturbance principle must hold as well.

A. Conditions for T1 = T3
With the help of Prop. 7 we can show the following.

Proposition 8. The following conditions are equivalent:

i) T1 = T3

ii) ⋂
B∈Oirr(S) cone ({Bx}x∈ΩB

) = cone (u)
iii) ⋂

B∈Oirr(S) conv ({{Bx}x∈ΩB
, o, u}) = conv ({o, u}).

Proof. i) ⇒ iii): It is clear that conv ({o, u}) ⊆ ⋂B∈Oirr(S) conv ({{Bx}x, o, u}). Now take

e ∈ ⋂
B∈Oirr(S) conv ({{Bx}x, o, u})

and define a dichotomic observable E with effects E+ = e and E− = u − e. Since E+ ∈ conv ({{Bx}x, o, u}) for all
B ∈ Oirr(S), it follows from Prop. 8 in [14] that E ∈ sim(B) for all B ∈ Oirr(S). From Prop. 7 it follows that
E ∈ T3 = T1 so that actually e ∈ conv ({o, u}).
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iii) ⇒ ii): It is clear that cone (u) ⊆ ⋂B∈Oirr(S) cone ({Bx}x). Now take g ∈ ⋂B∈Oirr(S) cone ({Bx}x) so that for all

B ∈ Oirr(S) there exists positive real numbers (αB
x)x ⊂ R+ such that g = ∑x αB

xBx. We denote α = supB∈Oirr(S)∑x αB
x .

If α = 0, then g = o ∈ cone (u); otherwise we define an effect f ∈ E(S) by f = 1
α
g. Now

f ∈ ⋂
B∈Oirr(S) conv ({{Bx}x, o}) ⊆ ⋂

B∈Oirr(S) conv ({{Bx}x, o, u}) = conv ({o, u}) (16)

so that f = pu for some p ∈ (0,1]. Thus, g = αpu ∈ cone (u).
ii) ⇒ i): As noted before, we always have T1 ⊆ T3 so that it suffices to show that T3 ⊆ T1. Thus, take A ∈ T3. By

Prop. 7, A ∈ sim(B) for all B ∈ Oirr(S) so that for each B ∈ Oirr(S) there exists a post-processing νB ∶ ΩB → ΩA such
that Ay = ∑x∈ΩB

νBxyBx for all y ∈ ΩA. Since all the post-processing elements are positive for each B ∈ Oirr(S), we have
that Ay ∈ cone ({Bx}x∈ΩB

) for all y ∈ ΩA and B ∈ Oirr(S). Thus,

Ay ∈ ⋂
B∈Oirr(S) cone ({Bx}x∈ΩB

) = cone (u) (17)

for all y ∈ ΩA from which it follows that A ∈ T1.

Proposition 9. Let S be a d-dimensional state space. If ∣Oextirr (S)∣ < ∞ and all the extreme simulation irreducible
observables have d + 1 outcomes, then T1 ≠ T3.

Proof. Since S is d-dimensional (i.e. dim(aff (S)) = d), the effect space is contained in a d + 1-dimensional vector
space. Suppose that, on the contrary T1 = T3. From Prop. 8 it follows then that

⋂
B∈Oextirr (S)

cone ({Bx}x) = ⋂
B∈Oirr(S) cone ({Bx}x∈ΩB

) = cone (u) .
Since dim(V∗) = d + 1 and each extreme simulation irreducible observable consists of d + 1 linearly independent

effects, it follows that cone ({Bx}x) has a non-empty interior, denoted by int (cone ({Bx}x)), in V∗ for all B ∈ Oirr(S).
In particular, u ∈ int (cone ({Bx}x)) for all B ∈ Oextirr (S), so that

∅ = int (cone (u)) = int
⎛⎝ ⋂
B∈Oextirr (S)

cone ({Bx}x)⎞⎠ = ⋂
B∈Oextirr (S)

int (cone ({Bx}x)) ≠ ∅ (18)

which is a contradiction.

Proposition 10. If there exist at least two post-processing inequivalent dichotomic simulation irreducible observables
on S, then T1 = T2 = T3.

Proof. By the assumption there exist two dichotomic observables E,F ∈ Oirr(S) such that E↮ F. Take A ∈ T3 so that
by Prop. 7 we have that A ∈ sim(E) and A ∈ sim(F). From Prop. 11 in [14] it follows that Ax ∈ conv ({E+,E−, o, u}) and
Ax ∈ conv ({F+,F−, o, u}) for all x ∈ ΩA. Since E and F are inequivalent, it follows that the set {u,E+,F+} is linearly
independent, so that Ax ∈ conv ({E+,E−, o, u}) ∩ conv ({F+,F−, o, u}) = conv ({o, u}) for all x ∈ ΩA. Thus, A ∈ T1 so
that T1 = T3.

With the previous proposition we can show that the no-free-information principle holds in any point-symmetric
state space, i.e., in a state space S where there exists a state s0 such that for all s ∈ S we have that

s′ ∶= 2s0 − s ∈ S. (19)

This means that for each state s there exists another state s′ such that s0 is an equal mixture of s and s′, i.e.,
s0 = 1

2
(s + s′). Point-symmetric state spaces include the classical bit, the qubit and polygon state spaces with even

number of vertices.
One can show that the effect space structure is also symmetric for symmetric state spaces. Firstly, all the non-trivial

extreme effects are seen to lie on a single affine hyperplane. Namely, if e ∈ E(S) is an extreme effect, e ≠ o, u, there
exists a (pure) state s ∈ S such that e(s) = 0 [7]. For s, there exists another state s′ such that s0 = 1

2
(s + s′) so

that e(s0) = 1
2
e(s′). Similarly there exists a (pure) state t ∈ S such that e(t) = 1 [7]. For t, we can find t′ such that

e(s0) = 1
2
(e(t) + e(t′)) = 1

2
(1 + e(t′)). Combining these two expressions for e(s0) we find that e(s′) = 1 + e(t′) from

which it follows that e(t′) = 0 and e(s′) = 1 so that e(s0) = 1
2

for all extreme effects e. Thus, all the non-trivial extreme
effects lie on an affine hyperplane determined by the state s0.
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FIG. 4. The even and odd polygon state spaces and their effects spaces.

Secondly, we see that all the non-trivial extreme effects must actually be indecomposable. If e ∈ E(S) is an extreme
effect, e ≠ o, u, then we can find some decomposition into indecomposable extreme effects {ei}ri=1 for some r ∈ N so
that e = ∑ri=1 αiei for some numbers {αi}ri=1 ⊂ [0,1] [7]. Since all extreme effects give probability 1

2
on the state s0,

we have that 1 = 2e(s0) = ∑ri=1 αi. Since e is extreme, it follows that r = 1 so that e is indecomposable.
Thirdly, the convex hull of all the extreme indecomposable effects (that lie on an affine hyperplane) is also point-

symmetric: if e ∈ E(S) is a non-trivial extreme effect, then e′ ∶= u − e is also a non-trivial extreme effect so that
e0 ∶= 1

2
u = 1

2
(e + e′) acts as the inversion point of the set.

Corollary 4. In every non-classical point-symmetric state space S we have T1 = T2 = T3.

Proof. Since S is non-classical, there exists two non-trivial extreme effects e and f such that e, f ≠ o, u, e ≠ f, u − f .
We define two dichotomic observables E and F by setting E+ = e, E− = u − e, F+ = f and F− = u − f . Since the state
space is point-symmetric, the extreme effects e, f, u − e and u − f are indecomposable so that together with the fact
that {e, u − e} and {f, u − f} are linearly independent sets it follows [14] that E and F are inequivalent dichotomic
simulation irreducible observables. The claim follows from Prop. 10.

B. Alternative characterization of T1
Finally, we show that a seemingly different formulation of “free-information” does not lead to a new concept.

Consider T ∈ T3 and take an observable A ∈ O(S) such that A ∉ T1. Since T is compatible with A there exists a joint
observable JA,T from which both A and T can be post-processed from. Since A is non-trivial and T is compatible with
every other observable, we can ask whether measuring the joint observable JA,T actually gives us any more information
than just measuring A. One way to consider this is to ask whether A is actually post-processing equivalent to JA,T so
that both can be obtained from each other by classically manipulating their outcomes. If this is the case, there is no
“free information” to be gained from measuring the joint observable. Thus, we consider one more set of observables:

T4 = {T ∈ T3 ∣∀A ∈ O(S) ∖ T1 ∶ ∃ JA,T ∈ O(S) ∶ JA,T ↔ A}.
We can show the following.

Proposition 11. T1 = T4.

Proof. Since T1 ⊆ T4 it suffices to show that T4 ⊆ T1. Thus, take T ∈ T4 so that for all A ∈ O(S) ∖ T1 we have that
A is post-processing equivalent with at least one of their joint observables JA,T. Thus, {A,T} ⊆ sim(JA,T) and since
A↔ JA,T it follows that T ∈ sim(A) for all A ∈ O(S) ∖ T1. From Prop. 6 it follows that T ∈ T1.

VIII. POLYGON STATE SPACES

A. Characterization of polygons

A regular polygon with n vertices in R2, or n-gon, is a convex hull of n points {x⃗k}nk=1 such that ∥x⃗k∥ = ∥x⃗j∥ and

x⃗k ⋅ x⃗k+1 = ∥x⃗k∥2
cos (π

n
) for all j, k = 1, . . . , n. As a state space Sn, we consider the polygon to be embedded in R3 on
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the z = 1 – plane. Thus, we follow the notation of [17] and define the extreme points of Sn as

sk =
⎛⎜⎜⎜⎜⎝
rn cos(2kπ

n
)

rn sin(2kπ

n
)

1

⎞⎟⎟⎟⎟⎠
, k = 1, . . . , n,

where we have defined rn = sec (π
n
).

As the polygons are two-dimensional, the effects can also be represented as elements in R3. Hence, we can express
each e ∈ E(Sn) as a vector e = (ex, ey, ez)T ∈ R3. With this identification we have that e(s) = e ⋅ s for all e ∈ E(Sn)
and s ∈ Sn where ⋅ is the Euclidean dot product. Clearly, we now have the zero effect o = (0,0,0)T and the unit effect
u = (0,0,1)T .

Depending on the parity of n, the state space may or may not have reflective point symmetry around the middle
point s0 = (0,0,1)T . As a result of this, the effect space E(Sn) has a different structure for odd and even n. For even
n, we find that the effect space E(Sn) has n non-trivial extreme points

ek = 1

2

⎛⎜⎜⎜⎜⎜⎜⎝

cos((2k − 1)π
n

)
sin((2k − 1)π

n
)

1

⎞⎟⎟⎟⎟⎟⎟⎠
, k = 1, . . . , n, (20)

so that E(Sn) = conv ({o, u, e1, . . . , en}). All the non-trivial extreme effects lie on a single (hyper)plane determined by
those points e such that e(s0) = 1/2.

In the case of odd n, the effect space has 2n non-trivial extreme effects

gk = 1

1 + rn
⎛⎜⎜⎜⎜⎝

cos(2kπ

n
)

sin(2kπ

n
)

1

⎞⎟⎟⎟⎟⎠
, fk = u − gk (21)

for k = 1, . . . , n. Now E(Sn) = conv ({o, u, g1, . . . , gn, f1, . . . , fn}) and the non-trivial effects are scattered on two
different planes determined by all those points g and f such that g(s0) = σn ∶= 1

1+rn and f(s0) = 1 − σn = rn
1+rn . The

even and odd polygon state spaces and their respective effect spaces are depicted in Figure 4.
In order to give a simple characterization of polygons, let us define functions ηne ∶ R2 → R and ηno ∶ R2 → R by

ηne (x⃗) = max
k∈{1,...,n} rn [cos(2πk

n
)x + sin(2πk

n
) y] ,

ηno (x⃗) = ηne (Rπ
n
x⃗) = max

k∈{1,...,n} rn
⎡⎢⎢⎢⎢⎣ cos((2k − 1)π

n
)x + sin((2k − 1)π

n
) y⎤⎥⎥⎥⎥⎦,

for all x⃗ = (x, y)T ∈ R2, where

Rπ
n
= ⎛⎜⎜⎝

cos(π
n
) − sin(π

n
)

sin(π
n
) cos(π

n
)
⎞⎟⎟⎠

is the rotation matrix with a rotation angle π/n around the origin in R2. We use the notation ηne/o when we consider

some properties that hold for both ηne and ηno .
We see that both ηne (x⃗) and ηno (x⃗) can be expressed as a maximization over an inner product of x⃗ and a collection

of unit vectors b⃗
(n,k)
e/o , i.e.

ηne/o(x⃗) = rn max
k∈{1,...,n} x⃗ ⋅ b⃗(n,k)e/o , (22)
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where we have defined

b⃗(n,k)e = (cos(2πk

n
) , sin(2πk

n
))T , (23)

b⃗(n,k)o = (cos((2k − 1)π
n

) , sin((2k − 1)π
n

))T . (24)

Thus, both ηne and ηno are polyhedral convex functions [18].
It is straightforward to see that ηne/o satisfy the following properties for all x⃗, y⃗ ∈ R2:

i) ηne/o(x⃗) ≥ 0,

ii) ηne/o(x⃗) = 0 ⇔ x⃗ = 0⃗,

iii) ηne/o(x⃗ + y⃗) ≤ ηne/o(x⃗) + ηne/o(y⃗).
Additionally we see that also the following is satisfied for all x ∈ R2:

iv) ηne/o(αx⃗) = αηne (x⃗) for all α ≥ 0.

Thus, both ηne and ηno almost satisfy the requirements of a norm; the only missing property is the requirement for a
reflective point symmetry, i.e. ηne/o(−x⃗) = ηne/o(x⃗) for all x⃗ ∈ R2. For even n, however, it is easy to confirm that both

ηne and ηno are point symmetric so that they are norms on R2. Similarly for odd n it is easy to see that the point
symmetry does not hold.

Even though for general n the functions ηne/o do not define a norm on R2, we can still use them to define different

sized polygons. As continuous polyhedral convex functions, ηne and ηno have closed polyhedral level sets

Bne/o(r) = {x⃗ ∈ R2 ∣ηne/o(x⃗) ≤ r}
which we will show to give rise to the polygons.

First of all, we see that the level sets Bne/o(r) are bounded so that they actually describe polytopes: When we

express x⃗ ∈ R2 in its polar form x⃗ = (x, y)T = ∥x⃗∥ (cos(θ), sin(θ))T , we have

ηne (x⃗) = rn ∥x⃗∥ max
k∈{1,...,n} cos(2πk

n
− θ) , (25)

ηno (x⃗) = rn ∥x⃗∥ max
k∈{1,...,n} cos((2k − 1)π

n
− θ) . (26)

Considering ηne first, we see that since the angles 2kπ
n

are an angle 2π
n

apart from each other for consecutive k’s and

since the maximization of cosine actually minimizes the angle 2πk
n

− θ, for the k′ ∈ {1, . . . , n} which minimizes the

angle we have 2πk′
n

− θ ≤ π
n

so that cos ( 2πk′
n

− θ) ≥ cos (π
n
). The same arguments hold for ηno as well so if x⃗ ∈ Bne/o(r)

for some r > 0, then

ηne/o(x⃗) ≤ r ⇒ ∥x⃗∥ ≤ r

rn cos (π
n
) = r. (27)

Hence, the level sets Bne/o(r) are compact (convex) polytopes for all r > 0. Furthermore, each Bne/o(r) has at most n

extreme points since it is an intersection of n closed half-spaces in R2.
The functions ηne and ηno have the following connection:

ηne/o(x⃗) ≤ rnηno/e(x⃗) (28)

for all x⃗ ∈ R2 and r ≥ 0. This can be seen using the expressions from (25) and (26); for example

ηno (x⃗) = rn ∥x⃗∥ max
k∈{1,...,n} cos((2k − 1)π

n
− θ) = r2

n ∥x⃗∥ max
k∈{1,...,n} cos((2k − 1)π

n
− θ) cos(π

n
)

= r2
n ∥x⃗∥

2
max

k∈{1,...,n} [cos(2(k − 1)π
n

− θ) + cos(2kπ

n
− θ)]

≤ rn
2

[rn ∥x⃗∥ max
k∈{1,...,n} cos(2(k − 1)π

n
− θ) + rn ∥x⃗∥ max

k∈{1,...,n} cos(2kπ

n
− θ)]

= rnηne (x⃗).
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Let us consider the specific level set Bno (rn). For each k ∈ {1, . . . , n}, we define s⃗k = (rn cos ( 2kπ
n

) , rn sin ( 2kπ
n

))T so

that sk = (s⃗k,1)T . It is easy to see that ηno (s⃗k) = rn so that s⃗k ∈ Bno (rn) for all k = 1, . . . , n. Furthermore, we have that∥s⃗k∥ = rn for all k so that each s⃗k lies on a circle of radius rn centered at the origin. This shows that s⃗k is extreme
in Bno (rn) for all k = 1, . . . , n, since a non-trivial convex decomposition for s⃗k would contradict the fact that ∥x⃗∥ ≤ rn
for all x⃗ ∈ Bno (rn). This, combined with the fact that Bno (rn) has at most n extreme points, shows that the extreme
points of Bno (rn) are exactly the vectors s⃗k for all k = 1, . . . , n. Hence, s = (s⃗,1) ∈ Sn if and only if s⃗ ∈ Bno (rn).

By similar arguments, we see that also Bne (r) is a regular polygon whose extreme points are rotated and scaled
from s⃗k. For example, in the case of even n, we see that the effects lying on the hyperplane that contains all the

non-trivial extreme effects can be characterized in terms of Bne (r); namely, e = (e⃗, 1
2
)T ∈ conv ({e1, . . . , en}) if and only

if e⃗ ∈ Bne ( 1
2
). Similarly for odd polygons we have that g = (g⃗, σn)T ∈ conv ({g1, . . . , gn}) if and only if g⃗ ∈ Bno (σn).

Hence, we can characterize (both the odd and even) polygon state spaces with the polyhedral functions ηno :

Sn = {(s⃗,1)T ∈ R3 ∣ηno (s⃗) ≤ rn}. (29)

Furthermore, for even n we have that

conv ({e1, . . . , en}) = {(e⃗, 1

2
)T ∈ R3 ∣ηne (e⃗) ≤ 1

2
} , (30)

and similarly for odd n

conv ({g1, . . . , gn}) = {(g⃗, σn)T ∈ R3 ∣ηno (g⃗) ≤ σn} . (31)

In both cases, the above sets serve as a compact bases for the positive dual cones in R3.

B. Characterization of T2
The analysis of T2 on polygon state spaces is straight-forward. If n = 3, then the state space is a simplex andT2 = O(S3). In all other cases we have T1 = T2 as a result of Coro. 2.

C. Characterization of T3
The post-processing equivalence classes of simulation irreducible observables on polygon state spaces were character-

ized in [14] where it was found that for an n-gon state space there existsm dichotomic and 1
3
m(m−1)(m−2) trichotomic

extreme simulation irreducible observables when n = 2m for some m ∈ N (even polygons) and 1
6
m(m + 1)(2m + 1)

trichotomic extreme simulation irreducible observables when n = 2m + 1 for some m ∈ N (odd polygons).
For even polygons with n = 2m where m ≥ 2, there exists at least two inequivalent dichotomic simulation irreducible

observables, so by Prop. 10 the set T3 coincides with the set of trivial observables.
For odd polygon state spaces we see that the extreme simulation irreducible observables have the same number of

outcomes as the dimension of the effect space, so given that there are a finite number of them, it follows from Prop.
9 that T3 ≠ T1. We continue to give a characterization of T3 for the odd polygon state spaces.

Let Sn be an odd polygon state space so that n = 2m+1 for some m ∈ N. There are qm ∶= 1
6
m(m+1)(2m+1) extreme

simulation irreducible observables that generate the cones generated by all the simulation irreducible observables. By
using some enumeration B(1), . . . ,B(qm) for these observables, we have that Oextirr (Sn) = {B(i)}qmi=1 so that for an
observable A ∈ O(Sn) we have

A ∈ T3 ⇔ Ax ∈ qm⋂
j=1

cone ({B(j)
x }x∈Ω

B(j) ) ∀x ∈ ΩA.

We can show that there are certain extreme simulation irreducible observables that are enough to characterize the
above intersection. Let B ∈ Oextirr (S). Since for all k ∈ {1,2,3} the effects Bk are indecomposable, for each k ∈ {1,2,3}
there exists 0 < ck ≤ 1 and effect gik ∈ {g1, . . . , g2m+1} such that Bk = ckgik . We see that we only need to consider the
case when ik ∈ {j, j +m,j +m + 1} for all k ∈ {1,2,3} for some j ∈ {1, . . . ,2m + 1}, where the addition of the indices is
taken modulo 2m + 1.
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FIG. 5. Simulation irreducible observable B on the heptagon state space with B1 = g1, B2 = 0.555g4 and B3 = 0.555g5. The
base of the cone generated by the effects of B forms a (blue) triangle on the base of the positive cone (left). The intersection
of the bases of all the simulation irreducible observables forms another polygon (right).

Proposition 12. An observable A ∈ O(S2m+1) on an odd polygon state space S2m+1 is in T3 if and only if

Ax ∈ 2m+1⋂
i=1

cone ({gi, gi+m, gi+m+1}) ∀x ∈ ΩA.

The complete proof of the proposition can be found in the appendix but one can easily convince oneself by looking
at Fig. 5 which shows the case of heptagon effect space. For each B ∈ Oextirr (Sn) we can consider the base of the cone
cone ({B1,B2,B3}) on the plane containing the indecomposable extreme effects {gi}ni=1, where the base takes the form
of a triangle that contains the middle point σnu. We can see that in order to characterize the intersection of such
cones, it is enough to consider the intersection of their respective bases, or triangles containing σnu, equivalently. In
the left of Fig. 5, the bases (coloured as blue and red) of two extreme simulation irreducible observables are shown
with the whole effects space. On the right is depicted all the triangles (formed by dashed lines) of all the bases on the
plane with the blue and red bases from the left figure also shown on the right. We see that the base of the intersection
of the cones (darker blue area) is characterized by triangles with vertices gi, gi+m and gi+m+1 (like the blue triangle)
so that their intersection is always contained in the intersection of other triangles (like the red triangle).

We are going to proceed with finding the base of the cone ⋂2m+1
i=1 cone ({gi, gi+m, gi+m+1}) by identifying the extreme

points of the base ⋂2m+1
i=1 conv ({gi, gi+m, gi+m+1}). Let us denote

Li = conv ({gi, gi+m})
and

Cm = 2m+1⋂
i=1

conv ({gi, gi+m, gi+m+1}) .
We will approach the problem as follows: at first, we will identify that Cm must be a polygon itself by looking at

its relation with the line segments Li. Then we will find the form of the extreme points of Cm and in the end we will
identify them. During the calculations we will work only in the 2-dimensional vector space given by aff ({gi}2m+1

i=1 ).

It is very useful to realize that Li generate hyperplanes in R2 and that Cm is an intersection of the halfspaces
corresponding to the hyperplanes Li that contain the point 0. It follows that we must have Li ∩ Cm ≠ ∅, ∀i ∈{1, . . . ,2m+ 1}, otherwise there would be hyperplanes separating Li and Cm, which is a contradiction with Cm being
given as an intersection of halfspace corresponding to Li. Since there are only 2m + 1 different line segments Li it
follows that Cm must have exactly 2m + 1 edges and from the symmetry it also follows that Cm must be a polygon.
Now the only thing we need to do is to identify the extreme points of Cm.

Since the line segments Li must intersect Cm it follows that the extreme points of Cm must correspond to the
intersections of these line segments. Let us denote

xi,j = Li ∩Li+j
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FIG. 6. The points {xi,j}mj=1 for a fixed i and the orientation of the inner polygon for odd (left, m = 3) and even (right, m = 4)
m.

where j ∈ {1, . . . ,m}, where if i + j ≥ 2m + 1, then we take (i + j) mod (2m + 1). Also note that considering j ≥m + 1
would be redundant. The next key step is to characterize the relation of xi,j and Cm. We can show the following.

Lemma 4. xi,1 are the extreme points of C.

Again, the complete proof of the lemma can be found in the appendix, but one can easily convince oneself by
looking at Fig. 6, where the points {xi,j}mj=1 are depicted for a fixed i in the case of a heptagon (left) and nonagon
(right) state space.

We are almost ready to move on to the complete characterization of T3 in odd polygon theories in terms of the
previously defined ηne/o functions. We will still make a few remarks on the inner polygons Cm.

Let n = 2m+ 1. We will consider separately, although analogously, the cases of even and odd m. This is because of
the orientation of the inner polygon Cm with respect to the outer polygon conv ({g1, . . . , gn}). To show the difference
between even and odd m, let us consider the intersection point of the boundary of the outer polygon and the half-line
through an extreme point xi,1 of the inner polygon emanating from the centroid (0,0, σn)T . If this intersection point
is also an extreme point of the outer polygon, then both the inner and outer polygons are similarly oriented; otherwise
they are differently oriented.

As xi,1 = Li∩Li+1 = conv ({gi, gi+m})∩conv ({gi+1, gi+m+1}), it is clear that the half-line through xi,1 that emanates
from the centroid meets the boundary of the outer polygon at some of the line segments conv ({gi+1, gi+2}) , . . . ,
conv ({gi+m−1, gi+m}).

For even m, i.e., for m = 2l for some l ∈ N, there exists an even number 2(l−1) of vertices gj between the vertices gi+1

and gi+m so that there is an odd number of such edges. From the symmetry it follows that for even m, the intersection
point must lie in the middle of the midmost edge conv ({gi+l, gi+l+1}). Thus, for even m, the inner polygon Cm is
differently oriented with respect to the outer polygon conv ({g1, . . . , gn}).

By contrast, for odd m, i.e., for m = 2l + 1 for some l ∈ N, there exists an even number of such edges, which
together with the symmetry of the situation tells us that now the intersection point is exactly one of the vertices of
the outer polygon, namely gi+l+1. Thus, for odd m, the inner polygon is similarly oriented to the outer polygon. The
orientations of the inner polygon for odd and even m are depicted in Fig. 6.

As we saw in the beginning of the section, the orientation of the polygon can also be characterized with the ηne/o
functions. Thus, in the characterization of T3 we must use either ηne or ηno depending on the parity of m.

Proposition 13. An observable A ∈ O(S2m+1) with effects Ax = αx(a⃗x, σ2m+1)T for all x ∈ ΩA is compatible with
every other observable if and only if for all x ∈ ΩA

ηne (a⃗x) ≤ σnrn sin( π
2n

)
if m = 2l for some l ∈ N, or

ηno (a⃗x) ≤ σnrn sin( π
2n

)
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if m = 2l + 1 for some l ∈ N.

Proof. By Prop. 6 it follows that A ∈ T3 if and only if (a⃗x, σn)T ∈ Cn for all x ∈ ΩA, and from Lemma 4 we know that
the xi,1 = (x⃗i,1, σn)T are the extreme points of Cn. Thus, if we show that ∥x⃗i,1∥ = ηne/o(x⃗i,1) = σnrn sin ( π

2n
), it follows

that Cn = {(x⃗, σn)T ∈ R3 ∣ ηne/o(x⃗) ≤ σnrn sin ( π
2n

)} which will prove the claim.

From xi,j = Li ∩Li+j we have that xi,1 = λigi + (1 − λ1)gi+m, where λ1 = 1 − 1
2
rn = 3σn−1

2σn
. By using (rather a lot of)

trigonometric identities we find that

xk,1 =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

− sin ( π
2n

)
1 + cos (π

n
) sin((4k + 1)π

2n
)

sin ( π
2n

)
1 + cos (π

n
) cos((4k + 1)π

2n
)

σn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

so that

x⃗k,1 = σnrn sin( π
2n

)
⎛⎜⎜⎜⎜⎝
− sin((4k + 1)π

2n
)

cos((4k + 1)π
2n

)
⎞⎟⎟⎟⎟⎠
,

from which it is easy to see that ∥x⃗k,1∥ = σnrn sin ( π
2n

) for all k ∈ {1, . . . , n}.
We also see that (the simplified expressions of) ηne (x⃗k,1) and ηno (x⃗k,1) then read as

ηne (x⃗k,1) = σnr2
n sin( π

2n
) max
j∈{1,...,n} sin((4j − 4k − 1)π

2n
) (32)

and

ηno (x⃗k,1) = σnr2
n sin( π

2n
) max
j∈{1,...,n} sin((4j − 4k − 3)π

2n
) . (33)

In both cases the maximum is attained when the expression inside the sine is closest to π/2. Now depending on the
parity of m, this happens for different values of j resulting in different expressions. For m = 2l for some l ∈ N, we find
that the maximum in Eq. (32) is attained for j ∈ {k + l, k + l + 1} and similarly the maximum in Eq. (33) is attained
for j = k + l + 1 so that for this case we have

η4l+1
e (x⃗k,1) = σ4l+1r

2
4l+1 sin( π

2(4l + 1)) sin((4l − 1)π
2(4l + 1) )

= σ4l+1r4l+1 sin( π

2(4l + 1)) = ∥x⃗k,1∥ .
However, for m = 2l + 1 for some l ∈ N we have that the maximum in Eq. (32) is attained for j = k + l + 1 and

similarly the maximum in Eq. (33) is attained for j ∈ {k + l, k + l + 1} so that for this case we have

η4l+3
o (x⃗k,1) = σ4l+3r

2
4l+3 sin( π

2(4l + 3)) sin((4l + 1)π
2(4l + 3) )

= σ4l+3r4l+3 sin( π

2(4l + 3)) = ∥x⃗k,1∥ .

D. Noise content

The noise content w(A;N ) of an observable A ∈ O(S) on a state space S with respect to a noise set N ⊂ O(S) is
defined [9] as

w(A;N ) = sup{λ ∈ [0,1] ∣ A = λN + (1 − λ)B for some N ∈ N and B ∈ O(S)}.
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When describing noisy observables, the noise is most commonly added externally to an observable, but the noise
content describes the amount of noise that an observable already has intrinsically. Usually the noise set is taken to
be the set of trivial observables T1.

Examining Prop. 13 more closely, the set T3 seems to be quite noisy in the sense that the effects of observables inT3 are scattered quite closely to the trivial effects on the line segment conv ({o, u}). Our aim is to show this remark
quantitatively by showing that an observable that is compatible with every other observable must have a quite high
noise content with respect to the trivial observables. We also show that an observable with a high enough noise
content is indeed compatible with every other observable on odd polygon state spaces.

For the noise set N = T1, the noise content of an observable A ∈ O(S) takes a rather simple form [9]:

w(A;T1) = ∑
x∈ΩA

min
s∈S Ax(s), (34)

and furthermore if the state space is a polytope (as is in the case of polygons), we have that

w(A;T1) = ∑
x∈ΩA

min
s∈SextAx(s), (35)

where Sext denotes the set of extreme points of S.
We start by making a connection between mins∈S Ax(s) and ηno (a⃗x). As before, for each effect Ax there exists αx > 0

such that Ax = αxax for some ax = (a⃗x, σn)T , where a⃗x ∈ R2. Since ax ∈ conv ({g1, . . . , gn}) for all x ∈ ΩA, we have
that for all x ∈ ΩA there exists λx ∈ [0,1] such that ax = λxhx + (1 − λx)σnu for some

hx ∈ ∂conv ({g1, . . . , gn}) = {(g⃗, σn)T ∈ conv ({g1, . . . , gn}) ∣ ηno (g⃗) = σn}.
We note that since hx lies on the boundary of the convex hull of the indecomposable effects, for all x ∈ ΩA, there
exists ix ∈ {1, . . . , n} such that hx ∈ conv ({gix , gix+1}). Since gix and gix+1 are indecomposable, by Prop. 16 they give
zero for some maximal faces Gix and Gix+1 of Sn. Furthermore, it is easy to see that they must be adjacent maximal
faces so that there exists an extreme state six ∈ Sn such that hx(six) = 0. Thus,

min
s∈Sextn

Ax(s) = αx min
s∈Sextn

[λxhx(s) + (1 − λx)σnu(s)] = αxλx min
s∈Sextn

hx(s) + αx(1 − λx)σn
= αxλxhx(six) + αx(1 − λx)σn = αx(1 − λx)σn

for all x ∈ ΩA. If we denote hx = (h⃗x, σn)T , we then see that a⃗x = λxh⃗x and

ηno (a⃗x) = λxηno (h⃗x) = λxσn = σn − 1

αx
min
s∈Sextn

Ax(s)
for all x ∈ ΩA. Thus, mins∈Sext Ax(s) = αx [σn − ηno (a⃗x)] for all x ∈ ΩA.

We can now show the following.

Proposition 14. Let A ∈ O(Sn) be an observable on an odd polygon state space Sn with effects Ax = αx(a⃗x, σn) for
all x ∈ ΩA. If A ∈ T3, then

w(A;T1) ≥ 1 − rn sin( π
2n

) (36)

if n = 4l + 3 for some l ∈ N, or

w(A;T1) ≥ 1 − r2
n sin( π

2n
) (37)

if n = 4l + 1 for some l ∈ N.

Proof. As was established above, we have that mins∈Sext Ax(s) = αx(σn − ηno (a⃗x)).
For n = 4l + 3, we have from Prop. 13 that ηno (a⃗x) ≤ rnσn sin ( π

2n
) for all x ∈ ΩA so that

w(A;T1) = ∑
x∈ΩA

min
s∈SextAx(s) = ∑

x∈ΩA

αx(σn − ηno (a⃗x))
≥ ∑
x∈ΩA

αxσn (1 − rn sin( π
2n

))
= 1 − rn sin( π

2n
) ,
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n 3 5 7 9 11 13 15 17 19 ⋯ →∞
R.H.S. of (36) 0 – 0.753 – 0.852 – 0.893 – 0.916 ⋯ → 1

R.H.S. of (37) – 0.528 – 0.803 – 0.872 – 0.905 – ⋯ → 1

TABLE I. The lower bounds of Eq. (36) and (37) for the noise contents of observables in T3 for the first few odd polygons and
the limit n→∞.

where on the last line we have used the fact that ∑x∈ΩA
αx = 1/σn which follows from the normalization of A.

For n = 4l + 1, we have from Prop. 13 that ηne (a⃗x) ≤ rnσn sin ( π
2n

) for all x ∈ ΩA. From Eq. (28) we get that

ηno (a⃗x) ≤ rnηne (a⃗x) for all x ∈ ΩA so that from similar calculation as above we get that w(A;T1) ≥ 1 − r2
n sin ( π

2n
).

The lower bounds of the noise content from the previous proposition for the first few polygons are presented in
Table I. We see that for n = 3, i.e., when the state space is classical, Eq. (36) gives the trivial lower bound zero, but
already for the pentagon (n = 5) Eq. (37) shows that the noise content of an observable in T3 must be more than 1/2.
We see that as the number of vertices in the polygons increase, so does the noise content of observables in T3 for both
Eq. (36) and (37). In the limit where n→∞ the right hand sides (R.H.S.) of both equations give the limit 1, so that
the observables in T3 become trivial. Indeed, as the number of vertices approaches infinity, the state space becomes
shaped like a disc, which is seen to be a point-symmetric state space so that by Cor. 4 we have T1 = T3.

From the other point of view, we can ask if sufficiently noisy observables are necessarily compatible with every

other observable. For that, let us consider the binarizations of an observable A ∈ O(Sn), i.e., binary observables Â(x)
with effects Â

(x)+ = Ax and Â
(x)− = u −Ax for all x ∈ ΩA. The noise content for these binarizations then read as

w(Â(x);T1) = min
s∈Sextn

Ax(s) + min
s∈Sextn

(u −Ax)(s) = 1 + min
s∈Sextn

Ax(s) − max
s∈Sextn

Ax(s)
for all x ∈ Ωx.

Denoting the extreme points of the state space S2m+1 by sk = (s⃗k,1)T , from the definition of ηne we see that

ηne (a⃗x) = max
k∈{1,...,n} a⃗x ⋅ s⃗k = 1

αx
max

k∈{1,...,n}Ax(sk) − σn = 1

αx
max
s∈Sextn

Ax(s) − σn
for all x ∈ ΩA. Hence, together with the previous expressions for minx∈ΩA

Ax(s), we have shown the following for the

binarizations Â(x) of an observable A:

w(Â(x);T1) = 1 − αx [ηne (a⃗x) + ηno (a⃗x)] (38)

for all x ∈ ΩA. We can now show that observables that have a high enough noise content are indeed included in T3.

Proposition 15. Let A ∈ O(Sn) be an observable on an odd polygon state space Sn with effects Ax = αx(a⃗x, σn) for
all x ∈ ΩA. If

1 −w(A;T1)
minx∈ΩA

αx
≤ sin( π

2n
) , (39)

then A is compatible with every other observable on Sn.

Proof. From the previous expression for the noise contents of the binarizations Â(x) of A, and by using Eq. (28), we
have that

ηne/o(a⃗x) = 1 −w(Â(x);T1)
αx

− ηno/e(a⃗x) ≤ 1 −w(Â(x);T1)
αx

− ηne/o(a⃗x)
rn

.

Since T1 is closed under post-processing and since Â(x) is clearly a post-processing of A for each x ∈ Ωx, we have by the

basic properties of the noise content [9] that w(Â(x);T1) ≥ w(A;T1) for all x ∈ ΩA. Thus, by rearranging the previous
expression we have that

ηne/o(a⃗x) ≤ (1 + 1

rn
)−1 1 −w(Â(x);T1)

αx
= σnrn (1 −w(Â(x);T1)

αx
)

≤ σnrn (1 −w(A;T1)
αx

) ≤ σnrn (1 −w(A;T1)
minx∈ΩA

αx
)

for all x ∈ ΩA, where we have noticed that (1 + 1/rn)−1 = σnrn. Now, if Eq. (39) holds, from Prop. 13 it then follows
that A ∈ T3.
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Appendix A: Some results on the structure of GPTs

In this appendix we will prove several minor results about the structure of general probabilistic theories that were
needed in the calculations. We will denote the interior of the set S by intr(S).
Definition 8. Let S be a state space and let E ⊂ S be a convex subset. We say that E is a face of S if z ∈ E and
z = λx + (1 − λ)y for some x, y ∈ S and λ ∈ [0,1] implies x, y ∈ E.

Definition 9. Let E ⊂ S, we say that E is a maximal face if E is a face and for any x ∈ S∖E we have conv (E ∪ {x})∩
intr(S) ≠ ∅.

If S is d-dimensional and has a finite number of extreme points, then maximal faces are the (d−1)-dimensional faces
of S. From a geometrical perspective their special properties all follow from the requirement that conv (E ∪ {x}) ∩
intr(S) ≠ ∅.
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Lemma 5. Let S be a state space, let e ∈ E(S) and let E0 = {x ∈ S ∶ e(x) = 0}. If E0 is a maximal face, then e is
indecomposable.

Proof. Let f ∈ E(S), denote F0 = {x ∈ S ∶ f(x) = 0} and assume e ≥ f . It follows that we must have E0 ⊂ F0 and since
E0 is maximal face it follows that either F0 = S or F0 = E0.

If F0 = S then f = 0. If F0 = E0, then pick x ∈ S such that x ∉ E0. Both e and f are uniquely defined by the

values e(x) and f(x), because E0 is a maximal face. This implies that we have f = f(x)
e(x) e, which shows that e is

indecomposable.

Proposition 16. Assume that S has only a finite number of extreme points. Let e ∈ E(S) and let E0 = {x ∈ S ∶ e(x) =
0}, then e is indecomposable if and only if E0 is a maximal face.

Proof. Assume that E0 = {x ∈ S ∶ e(x)} is not a maximal face, then there is a maximal face F0 such that E0 ⊂ F0 [16].
Moreover let f ∈ E(S) be such that F0 = {x ∈ S ∶ f(x) = 0} and denote G = {y ∈ S ∶ y ∉ E0, y is extreme} and

m = min
y∈G e(y).

Clearly m > 0. We will show that e ≥ mf ; let z ∈ S be an extreme point, then either z ∈ E0 or z ∈ G. If z ∈ E0 ⊂ F0,
then e(z) = 0 ≥ 0 =mf(z). If z ∈ G, then e(z) ≥m ≥mf(z).

Appendix B: Proof of Prop. 12

We recall from [14] that the extreme simulation irreducible observables are characterized by triangles on the base
conv ({g1, . . . , gn}) with vertices from the set {g1, . . . , g2m+1} such that σnu is included in the triangles. We show that
such triangles are in one-to-one correspondence with the extreme simulation irreducible observables.

To see this, first let B ∈ Oextirr (S2m+1) so that ΩB = {1,2,3}. Since for all k ∈ {1,2,3} the effects Bk are indecom-
posable, for each k ∈ {1,2,3} there exists 0 < ck ≤ 1 and effect gik ∈ {g1, . . . , g2m+1} such that Bk = ckgik . From the
normalization of B it follows that

u = c1gi1 + c2gi2 + c3gi3
so that from the z–components of the vectors we get a requirement that c1 + c2 + c3 = 1

σn
. Thus, if we denote the sum

c1 + c2 + c3 by c, we see that

σnu = c1
c
gi1 + c2c gi2 + c3c gi3 (B1)

which shows that the vertices {gi1 , gi2 , gi3} form a triangle conv ({gi1 , gi2 , gi3}) on the base conv ({g1, . . . , g2m+1}) such
that σnu ∈ conv ({gi1 , gi2 , gi3}).

To see the contrary, let j1, j2, j3 be any three indices from the set {1, . . . ,2m+1} such that σnu ∈ conv ({gj1 , gj2 , gj3}).
Thus, there exists convex coefficients d̃1, d̃2, d̃3 ∈ [0,1], d̃1 + d̃2 + d̃3 = 1, such that σnu = d̃1gj1 + d̃2gj2 + d̃3gj3 . If we

denote dk = d̃k/σn ∈ (0,1] and B′k = dkgjk for all k ∈ {1,2,3}, we find that {B′1,B′2,B′3} is a set of linearly independent
indecomposable effects such that B′1 +B′2 +B′3 = u, which shows that an observable B′ defined with these effects is an
extreme simulation irreducible observable.

Since the set conv ({g1, . . . , g2m+1}) is a base for the positive cone of the effects, for each effect Ay of an observable
A ∈ O(S2m+1) there exists αy > 0 and ay ∈ conv ({g1, . . . , g2m+1}) such that Ay = αyay. Similarly, for each j ∈{1, . . . , qm} we have that B

(j)
k = c(j)k g

(j)
i
(j)
k

for some c
(j)
k ∈ (0,1] and i

(j)
k ∈ {1, . . . , n} for all k ∈ {1,2,3}. We then see that

in order to characterize the intersection of the cones generated by the extreme simulation irreducible observables, i.e.
essentially T3, we need to only consider the intersection of the respective triangles on the base.

Lemma 6. Observable A ∈ O(S2m+1) with effects Ay = αyay such that ay ∈ conv ({g1, . . . , g2m+1}) for all y ∈ ΩA is inT3 if and only if

ay ∈ qm⋂
j=1

conv ({g(j)
i
(j)
1

, g
(j)
i
(j)
2

, g
(j)
i
(j)
3

}) ∀y ∈ ΩA.

Proof. By Cor. 3 we see that we need to show that

Ay ∈ qm⋂
j=1

cone({g(j)
i
(j)
1

, g
(j)
i
(j)
2

, g
(j)
i
(j)
3

}) (B2)
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FIG. 7. Lemma 7

if and only if

ay ∈ qm⋂
j=1

conv ({g(j)
i
(j)
1

, g
(j)
i
(j)
2

, g
(j)
i
(j)
3

}) (B3)

for all y ∈ ΩA.
First let Ay be in the intersection of cones, which itself is a cone, in (B2) for some y ∈ ΩA. Since Ay = αyay for

some αy > 0, it follows that also ay is included in the same intersection of cones. Thus, ay can be expressed as a

positive linear combination of g
(j)
i
(j)
1

, g
(j)
i
(j)
2

, g
(j)
i
(j)
3

for all j ∈ {1, . . . , qm}. Since all the vectors ay, g
(j)
i
(j)
1

, g
(j)
i
(j)
2

, g
(j)
i
(j)
3

lie on the

same z = σn –plane for all j, it follows that the positive linear combination must actually be a convex combination
which shows (B3).

Let then ay be included in the intersection of the convex hulls in (B3) for some y ∈ ΩA. Since a convex hull is just
a special case of a conic hull, we see that ay is also included in the intersection of cones in (B2). By multiplying ay
by αy we see that then (B2) holds.

The smallest such triangles to contain the centroid (0,0, σn)T have vertices gi, gi+m and gi+m+1 for i = 1, . . . ,2m+1,
where the addition is modulo 2m+1. We will show that the intersection of these smallest triangles gives us the whole
intersection of all the triangles that represent the extreme simulation irreducible observables. We start with a small
Lemma (see Fig. 7).

Lemma 7. For an extreme simulation irreducible observable B such that Bk = ckgik for k ∈ {1,2,3} we have that

3⋂
k=1

conv ({gik , gik+m, gik+m+1}) ⊆ conv ({gi1 , gi2 , gi3}) .
Proof. To see this, suppose that, contrary to this, there exists a point x ∈ ⋂3

k=1 conv ({gik , gik+m, gik+m+1}) such that
x ∉ conv ({gi1 , gi2 , gi3}). Without loss of generality we assume that i1 < i2 < i3.

If we consider a fixed vertex gik for some k ∈ {1,2,3}, it is clear that the indices ik +m and ik +m+ 1 are contained
in the set of indices {ik+1, ik+1 + 1, . . . , ik+2 − 1, ik+2} (Fig. 7). This is because otherwise they would be contained in
either {ik+2, ik+2 + 1, . . . , ik − 1, ik} or {ik, ik + 1, . . . , ik+1 − 1, ik+1} so that

conv ({gik , gik+m, gik+m+1}) ⊂ conv ({gik+2 , . . . , gik})
or

conv ({gik , gik+m, gik+m+1}) ⊂ conv ({gik , . . . , gik+1})
both of which would contradict the fact that σnu ∈ conv ({gik , gik+m, gik+m+1}).
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Since now x ∈ conv ({gik , gik+m, gik+m+1}) for all k ∈ {1,2,3} but x ∉ conv ({gi1 , gi2 , gi3}), we must have for all
k′ ∈ {1,2,3} that

x ∉ conv ({gik′ , gik′+m, gik′+m+1})⋂ conv ({gi1 , gi2 , gi3}) .
We have by the above statement about the indices that {ik +m, ik +m + 1} ⊆ {ik+1, ik+1 + 1, . . . , ik+2 − 1, ik+2} so that
it then follows that

conv (gik , gik+m, gik+m+1) ⊆ conv ({gi1 , gi2 , gi3})⋃ conv ({gik+1 , gik+1+1 . . . , gik+2})
which is a disjoint union for all k ∈ {1,2,3}. Thus, x ∈ conv ({gik+1 , gik+1+1 . . . , gik+2}) for all k ∈ {1,2,3} which is a
contradiction since the sets do not intersect.

Proof of Proposition 12. From Cor. 3 it is clear that in order to prove the statement we need to show that

qm⋂
j=1

cone ({B(j)
x }x∈Ω

B(j) ) = 2m+1⋂
i=1

cone ({gi, gi+1, gi+m+1}) .
The above statement is about cones but by Lemma 6 we can equivalently consider it in terms of the triangles that

represent the observables in Oextirr (S2m+1). By using the previously introduced notation for the effects of the extreme
simulation irreducible observables, the above statement about the triangles then reads as

qm⋂
j=1

conv ({g(j)
i
(j)
1

, g
(j)
i
(j)
2

, g
(j)
i
(j)
3

}) = 2m+1⋂
i=1

conv ({gi, gi+m, gi+m+1}) .
The inclusion “⊆” is clear since among the qm triangles that represent the extreme simulation irreducible observables

the triangles with vertices gi, gi+m and gi+m+1 for i = 1, . . . ,2m + 1 are included.
For the inclusion “⊇”, we use Lemma 7 for observables {B(j)}qmj=1 which states that

3⋂
k=1

conv ({g(j)
i
(j)
k

, g
(j)
i
(j)
k

+m, g
(j)
i
(j)
k

+m+1
}) ⊆ conv ({g(j)

i
(j)
1

, g
(j)
i
(j)
2

, g
(j)
i
(j)
3

})
for all j ∈ {1, . . . , qm}. By taking the intersection of all j ∈ {1, . . . , qm} we get

2m+1⋂
i=1

cone ({gi, gi+1, gi+m+1}) = qm⋂
j=1

3⋂
k=1

conv ({g(j)
i
(j)
k

, g
(j)
i
(j)
k

+m, g
(j)
i
(j)
k

+m+1
}) ⊆ qm⋂

j=1

conv ({g(j)
i
(j)
1

, g
(j)
i
(j)
2

, g
(j)
i
(j)
3

})
which proves the statement.

Appendix C: Proof of Lemma 4

Proof of Lemma 4. We first see that either xi,j is an extreme point of Cm or xi,j ∉ Cm. Namely, assume that
xi,j ∈ Cm but it is not an extreme point of Cm, then there exists some open line segment M , such that xi,j ∈M and
M ⊂ Cm. We must have M ⊂ Li since if M would intersect Li, then we would get a contradiction with M ⊂ Cm. But
then we must also have M ⊂ Li+j which is a contradiction with Li ≠ Li+j .

Next fix i ∈ {1, . . . ,2m + 1}. From xi,j = Li ∩Li+j we get xi,j = λjgi + (1 − λj)gi+m, where

λj = cos ( (2j+1)π
4m+2

)
2 cos ( jπ

2m+1
) cos ( π

4m+2
) = 1

2
[1 − tan( π

4m + 2
) tan( jπ

2m + 1
)] .

Since jπ/(2m + 1) ∈ [0, π/2] for all j ∈ {1, . . . ,m}, we have that tan ( jπ
2m+1

) is an increasing function of j so that
λj ≤ λ1. We then see that

xi,j = λjgi + (1 − λj)gi+m = λj
λ1
xi,1 + (1 − λj

λ1
) gi+m

for all j ∈ {1, . . . ,m}, where now
λj
λ1

∈ [0,1] so that xi,j ∈ conv ({xi,1, gi+m}). Since

xi,1, gi+m ∈ conv ({gi+1, gi+2, . . . , gi+m+1}) ,
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it follows that also xi,j ∈ conv ({gi+1, gi+2, . . . , gi+m+1}) for all j ∈ {1, . . . ,m}.
Clearly xi,j ∈ Li for all j ∈ {1, . . . ,m} but xi,j ∉ Li+1 for all j ∈ {2, . . . ,m}, where Li+1 can be expressed as

conv ({gi+1, . . . , gi+m+1}) ∩ conv ({gi+1, gi+m+1, gi+m+2}) ,
so that xi,j ∉ conv ({gi+1, gi+m+1, gi+m+2}) for j ∈ {2, . . . ,m}. Thus, it follows that xi,j ∉ Cm for j ∈ {2, . . . ,m}.

The only candidates for the extreme points of Cm are then xi,1 for all i ∈ {1, . . . ,2m + 1}. From the symmetry it
follows that all xi,1 indeed must be extreme since if xi′,1 is not extreme for some i′ ∈ {1, . . . ,2m + 1} it would follow
that xi,1 is not extreme for any i ∈ {1, . . . ,2m + 1}. Hence, the claim follows.
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On the properties of spectral effect algebras

Anna Jenčová∗ and Martin Plávala†

Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, Bratislava, Slovakia

The aim of this paper is to show that there can be either only one or uncountably many contexts in
any spectral effect algebra, answering a question posed in [S. Gudder, Convex and Sequential Effect
Algebras, (2018), arXiv:1802.01265]. We also provide some results on the structure of spectral effect
algebras and their state spaces and investigate the direct products and direct convex sums of spectral
effect algebras. In the case of spectral effect algebras with sharply determining state space, stronger
properties can be proved: the spectral decompositions are essentially unique, the algebra is sharply
dominating and the set of its sharp elements is an orthomodular lattice. The article also contains a
list of open questions that might provide interesting future research directions.

I. INTRODUCTION

Effect algebras were defined in [1] as a generalization of the set of projectors on a Hilbert space. Since then a variety
of results has been developed in the field, it has been used in the so called general probabilistic theories and it has
attracted the interest of both mathematicians and physicist alike.
We present an answer to the open question presented in [2] about the possible number of contexts contained in a

spectral effect algebra. The article has slightly overgrown from a simple answer to a question into a broader look on
some of the properties of the spectral effect algebras with its own set of open questions.
The article is organized as follows: in Sec. II we present the basic definitions and results. In Sec. III we introduce

spectral effect algebras and prove some basic results on properties of spectral decompositions and the structure of
the state space. In Sec. IV we prove the main result that a spectral effect algebra may contain only either one or
uncountably many contexts. In Sec. V we inspect two standard constructions with convex effect algebras: the direct
product and the direct convex sum and we show that while the direct product of spectral effect algebras is again a
spectral effect algebra, the direct convex sum of spectral effect algebras is not spectral. In Sec. VI we look at a special
case of spectral effect algebras that have sharply determining state space and we show that in such setting a result
analogical to [3, Proposition 18] holds, moreover, the algebra is sharply dominating and the set of its sharp elements
is an orthomodular lattice. The Sec. VII contains the conclusions and open questions.

II. PROPERTIES OF CONVEX EFFECT ALGEBRAS

In this section we are going to present definition and properties of convex effect algebras. We closely follow the
definitions used in [2] with a slightly different notation, more natural for linear effect algebras that are closely related
to general probabilistic theories.

Definition 1. An effect algebra is a system (E, 0, 1,+), where E is a set containing at least one element, 0, 1 ∈ E
and + is a partial binary operation on E. Let a, b ∈ E, then we write a+ b ∈ E whenever a+ b is defined (and hence
yields an element of E). Moreover we require that (E, 0, 1,+) satisfies the following conditions:

(E1) if a+ b ∈ E then b+ a ∈ E and a+ b = b+ a,

(E2) if a+ b ∈ E and (a+ b) + c ∈ E, then a+ (b+ c) ∈ E, a+ (b + c) = (a+ b) + c,

(E3) for every a ∈ E there is unique a′ ∈ E such that a+ a′ = 1, we usually denote a′ = 1− a,

(E4) if a+ 1 ∈ E, then a = 0.

Definition 2. An effect algebra E is convex if for every a ∈ E and λ ∈ [0, 1] ⊂ R there is an element λa ∈ E such
that for all λ, µ ∈ [0, 1] and a, b ∈ E we have

(C1) µ(λa) = (λµ)a,

∗ jenca@mat.savba.sk
† martin.plavala@mat.savba.sk
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(C2) if λ+ µ ≤ 1, then λa+ µa ∈ E and (λ+ µ)a = λa+ µa,

(C3) if a+ b ∈ E, then λa+ λb ∈ E and λ(a+ b) = λa+ λb,

(C4) 1a = a.

Definition 3. Let E, F be effect algebras. A map φ : E 7→ F is called additive if for a, b ∈ E, a + b ∈ E we have:
φ(a) + φ(b) ∈ F and φ(a+ b) = φ(a) + φ(b). An additive map such that Φ(1) = 1 is called a morphism. A morphism
is an isomorphism if it is surjective and for a, b ∈ E, φ(a) + φ(b) ∈ F implies a+ b ∈ E. If E and F are convex effect
algebras, then a morphism Φ is affine if

Φ(λa) = λΦ(a), a ∈ E, λ ∈ [0, 1].

Definition 4. A state on an effect algebra E is a morphism s : E 7→ [0, 1] ⊂ R. The set of states on an effect algebra
will be denoted S(E).

It was proved in [4] that any state on a convex effect algebra is affine. The set of states is also referred to as state
space of the effect algebra and it will play an important role in later constructions.
Let V be a real vector space with a pointed convex cone P , that is P ∩ (−P ) = {0} where 0 denotes the zero vector.

For v, w ∈ V we define v ≥ w if and only if v−w ∈ P . Then ≤ is a partial order in V and (V, P ) is an ordered vector
space. Let u ∈ P , then the set

[0, u] = {v ∈ V : 0 ≤ v ≤ u}
is an effect algebra with the operation + defined as the sum of the vectors and for a, b ∈ [0, u] we have a+ b ∈ [0, u]
if and only if a+ b ≤ u which is exactly why we have chosen such unusual notation in Def. 1. Also note that in this
case u is the unit of the effect algebra [0, u], i.e. we have 1 = u.

Definition 5. A linear effect algebra is an effect algebra of the form [0, u] for some ordered vector space (V, P ) and
u ∈ P .

The following is an important result.

Proposition 1. Every convex effect algebra is affinely isomorphic to a linear effect algebra.

Proof. See [5].

From now on we are going to assume that all of the effect algebras we will work with are convex. Below, we omit
the isomorphism and identify convex effect algebras with the linear effect algebras they are isomorphic to. Moreover,
we may and will assume that the interval [0, u] generates the ordered vector space (V, P ), so that u is an order unit
in (V, P ), [6, Lemma 3.1].

Definition 6. Let f ∈ E. We say that

• f is one-dimensional if f 6= 0 and for g ∈ E we have that f ≥ g implies g = λf for some λ ∈ [0, 1];

• f is sharp if f ≥ g and 1− f ≥ g implies g = 0;

• f is extremal if f = λg1 + (1 − λ)g2 for some λ ∈ (0, 1) implies that f = g1 = g2.

The set of sharp elements will be denoted by S(E). The set of sharp one-dimensional elements will be denoted by
S1(E).

It was shown in [6, Lemma 4.4] that any extremal element is sharp, but the converse is not necessarily true.
Moreover, for any sharp effect f there are states s0, s1 ∈ S(E) such that s0(f) = 0, s1(f) = 1. Note that in general
the states s0 and s1 do not have to be unique. In general probabilistic theories [7] one-dimensional effects are called
indecomposable. In what follows we will be interested in the properties of sharp one-dimensional effects.

Proposition 2. Let E be a convex effect algebra, then a one-dimensional effect is sharp if and only if it is extremal.

Proof. As noted above, every extremal element is sharp. Conversely, let f ∈ S1(E) and assume that we have f =
λg1 + (1− λ)g2 for some g1, g2 ∈ E and λ ∈ (0, 1). It follows that we have f ≥ λg1 and f ≥ (1− λ)g2 and since f is
one-dimensional we must have g1 = µ1f and g2 = µ2f , i.e. f must be a convex combination of its multiples. Let now
µ ≥ 1 be such that µf ∈ E. Let η = min{ 1

µ , 1− 1
µ} then we have

f ≥ ηf

1− f =
1

µ
(1− µf) + (1− 1

µ
)1 ≥ η1 ≥ ηf.

Since f is sharp, this implies that η = 0 and hence µ = 1. It follows that we must have g1 = g2 = f and f is
extremal.
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III. CONTEXTS AND SPECTRAL EFFECT ALGEBRAS

In this section we are going to introduce contexts and spectral effect algebras and provide some results on their
structure.

Definition 7. A context in a convex effect algebra E is a finite collection A = {a1, . . . , an} ⊂ S1(E) such that∑n
i=1 ai = 1.

Let A = {a1, . . . , an} be a context in a convex effect algebra E and let âi = {si ∈ S(E) : si(ai) = 1}. By the
remarks below Definition 6, the sets âi are nonempty and it is easy to see that

si(aj) = δij , ∀si ∈ âi, i, j = 1, . . . , n,

where δij is the Kronecker delta.
Let us denote by Ā the convex effect subalgebra generated by A, that is

Ā =

{∑

i

µiai, µi ∈ [0, 1]

}
.

Then Ā is the interval [0, uA] in the ordered vector space V (A) := {∑i tiai, ti ∈ R}, with an obvious positive cone
and order unit uA =

∑
i ai.

Definition 8. We say that a convex effect algebra E is spectral if for every f ∈ E there is a context A ⊂ E such
that f ∈ Ā.

Specifically, any f ∈ E has the form

f =
∑

i

µiai (1)

for some µi ∈ [0, 1] and some context A = {a1, . . . , an}. Any expression of the form (1) will be called a spectral
decomposition of f .
The most important examples are the algebras of finite dimensional classical and quantum effects, that were

characterized in [2]. It is also easy to see that the algebra of effects over a finite dimensional real Hilbert space is
spectral. Note that it is not assumed that the number of elements is the same in each context or that the space V
generated by E is finite dimensional, although all the above examples have these properties.
We next discuss some properties of spectral effect algebras and their state spaces. The following will be a useful

tool.

Lemma 1. Let f =
∑n

i=1 µiai be a spectral decomposition of f . Then

max
s∈S(E)

s(f) = max{µ1, . . . , µn},

min
s∈S(E)

s(f) = min{µ1, . . . , µn}.

Proof. Let s ∈ S(E), then we have

s(f) =
n∑

i=1

µis(ai) ≤ max{µ1, . . . , µn}
n∑

i=1

s(ai) = max{µ1, . . . , µn}.

To show that the bound is tight let max{µ1, . . . , µn} = µi′ for some i′ ∈ {1, . . . , n} and let s ∈ âi′ . Then we have

s(f) = µi′ = max{µ1, . . . , µn}.

The proof for the minimum is analogical.

We next show that the elements of the embedding ordered vector space V have spectral decompositions as well.

Lemma 2. Let E be spectral and let (V, P ) be the ordered vector space with an order unit u ∈ P such that E = [0, u].
Then for any v ∈ V there is a context A such that v ∈ V (A).
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Proof. Since u is a order unit, we have −λu ≤ v ≤ λu for some λ > 0. Then 0 ≤ v+λu ≤ 2λu, so that a := 1
2λv+

1
2u ∈

E. Let a =
∑

i νiai for some context A, then v = λ(2a− u) =
∑

i λ(2νi − 1)ai.

Proposition 3. Any spectral effect algebra E has an order determining set of states, that is, s(a) ≤ s(b) for all
s ∈ S(E) implies that a ≤ b.

Proof. Let a, b ∈ E be such that s(a) ≤ s(b) for all states s. By Lemma 2, there is some context A and real numbers
µi such that v = b− a =

∑
i µiai. By the assumption, µi = si(v) ≥ 0 for si ∈ âi, so that b− a ≥ 0 and a ≤ b.

Let us remark that it was proved in [6, Theorem 3.6] that a convex effect algebra E has an order determining set
of states if and only if it is Archimedean. In this case, the order unit seminorm

‖v‖ := inf{λ > 0, −λu ≤ v ≤ λu} = sup
s∈S(E)

|s(v)|

is a norm. Using Lemma 1, we obtain for f ∈ E with spectral decomposition f =
∑

i µiai that

‖f‖ = max{µ1, . . . , µn}, ‖1− f‖ = 1−min{µ1, . . . , µn}. (2)

More generally, if v =
∑

i αiai is a spectral decomposition, then we have for si ∈ âi

‖v‖ = sup
s∈S(E)

|s(v)| = max
i

|αi| =: |αimax | = |simax(v)|.

An element f ∈ E does not have to have a unique spectral decomposition. The following result is inspired by [3]
and is immediate from (2).

Proposition 4. Let f ∈ E have two spectral decompositions

n∑

i=1

µiai = f =

m∑

j=1

νjbj

Then max{µ1, . . . , µn} = max{ν1, . . . , νm} and min{µ1, . . . , µn} = min{ν1, . . . , νm}.

Up to now it is not clear whether the sets âi consist of a single state. Clearly, these sets are faces of S(E). More

generally, for any element f ∈ E, the set f̂ := {s ∈ S(E), s(f) = 1} is a face of S(E) (note that this also may be

empty). A face of this form will be called E-exposed. If f̂ = {s}, we say that s is and E-exposed point of S(E), in this

case, we write f̂ = s. If a ∈ S1(E), â is a nonempty E-exposed proper face of S(E). Note that if A = {a1, . . . , an} is
a context, the faces âi are affinely independent. We next show a property of the E-exposed points of S(E).

Proposition 5. Every E-exposed point of S(E) has the form â for some a ∈ S1(E).

Proof. Let s ∈ S(E) be an E-exposed point, so that s = f̂ for some f ∈ E. Then 1 = s(f) = maxs′∈S(E) s
′(f) and

s is the unique point where this maximum is attained. We have already showed in the proof of Lemma 1 that every
effect in E attains its maximum at some s ∈ â with a ∈ S1(E). The result follows.

IV. NUMBER OF CONTEXTS IN A SPECTRAL EFFECT ALGEBRA

In this section we are going to prove the main result that answers the open question from [2] about the possible
number of contexts in a spectral effect algebra.

Proposition 6. Assume that every pair a, a′ ∈ S1(E) is summable. Then there is only one context in E.

Proof. Assume that there are two contexts A 6= B in E. Then there is at least one effect a such that a ∈ A but a /∈ B.
Let B = {b1, . . . bn} and let s ∈ â. For every bi, i ∈ {1, . . . , n}, we must have a+ bi ∈ E. This implies

s(a+ bi) ≤ 1

which gives s(bi) = 0 for all i ∈ {1, . . . , n} which is a contradiction with
∑n

i=1 bi = 1.

Proposition 7. Every spectral effect algebra E contains either one context or uncountably many contexts.
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Proof. Assume that E contains at least two contexts. As a result of Prop. 6, there are a, b ∈ S1(E), a 6= b, that are
not summable. Let λ ∈ [0, 1] and denote

cλ = λa+ (1− λ)b.

We will show that every cλ must belong to a different context, hence E we must contain uncountably infinite number
of contexts.
Since E is spectral we have that for every λ ∈ [0, 1] there is a context Cλ such that cλ ∈ C̄λ. Assume that for some

λ 6= µ, µ ∈ [0, 1] we have Cλ = Cµ. Then we have a, b ∈ V (Cλ) as cλ, cµ ∈ V (Cλ) and we can express a and b as
linear combinations of cλ and cµ.
Let Cλ = {c1, . . . , cn}, then we must have

a =

n∑

i=1

αici

for some αi ∈ R. Moreover, let si ∈ ĉi, then αi = si(a) ∈ [0, 1] for all i implies that a ∈ C̄λ, which yields a ∈ Cλ as a
is sharp and one-dimensional. In a similar fashion we get b ∈ Cλ, which is a contradiction with the assumption that
a and b are not summable.

V. COMPOSITION OF SPECTRAL EFFECT ALGEBRAS

In the study of spectral effect algebras, it is a natural question whether spectrality is preserved by some constructions
over convex effect algebras. In this section, we study the direct products and direct convex sums, note that these are
the product and coproduct in the category of convex effect algebras.

Definition 9. Let E1, E2 be effect algebras, then their direct product is an effect algebra E1×E2 given as E1×E2 =
{(f1, f2) : f1 ∈ E1, f2 ∈ E2}. The partial binary operation + is given for fi, f

′
i ∈ Ei, such that fi + f ′

i ∈ Ei, i ∈ {1, 2}
as (f1, f2) + (f ′

1, f
′
2) = (f1 + f ′

1, f2 + f ′
2) and the unit of E1 × E2 is (1, 1). If E1, E2 are convex effect algebras, then

we can define a convex structure on E1 × E2 by λ(f1, f2) = (λf1, λf2), for λ ∈ [0, 1]. In this way, the direct product
of convex effect algebras is a convex effect algebra.

Proposition 8. The direct product of spectral effect algebras is a spectral effect algebra.

Proof. It is easy to see that an element (f1, f2) ∈ E1 ×E2 is sharp if and only if both f1 and f2 are sharp. Moreover,
since (f1, f2) = (f1, 0)+(0, f2), such an element is one-dimensional if and only if one of the elements is one-dimensional
and the other is 0. Let now A = {a1, . . . , an} ⊂ E1 and B = {b1, . . . , bm} ⊂ E2 be contexts. It is straightforward to
see that (a1, 0) + . . .+ (an, 0) + (0, b1) + . . .+ (0, bm) = (1, 1), hence

{(a1, 0), . . . , (an, 0), (0, b1), . . . , (0, bm)} ⊂ E1 × E2 (3)

is a context. Moreover, any context in E1 × E2 is of this form.
Finally let (f1, f2) ∈ E1 ×E2 be any element. Since E1 and E2 are spectral there are contexts A ⊂ E1 and B ⊂ E2

such that f1 ∈ Ā and f2 ∈ B̄. It follows that we have

(f1, f2) =

n∑

i=1

µi(ai, 0) +

m∑

j=1

νj(0, bj)

which shows that E1 × E2 is spectral effect algebra.

The definition of the convex direct sum is a bit more involved.

Definition 10. Let E1, E2 be convex effect algebras, then they are affinely isomorphic to the intervals [0, u1] ⊂ C1 ⊂
V1 and [0, u2] ⊂ C2 ⊂ V2 respectively, where for i ∈ {1, 2} we have that Vi are vectors spaces, Ci are pointed cones
and ui ∈ Ci. Take the vector space V1 × V2 that corresponds to the coproduct of the respective vector spaces and
define a relation of equivalence ≈ by (u1, 0) = (0, u2), i.e. (x1, y2) ≈ (x2, y2) if and only if we have

(x1, y1) = (x2, y2) + α(1,−1)

for some α ∈ R. It is clear that ≈ is reflexive, symmetric and transitive. Let V be the quotient space V = (V1×V2)/≈
and define the cone C = (C1×C2)/≈ ⊂ V as the set of equivalence classes containing an element of C1×C2. Clearly, C
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is a convex cone containing u := [(u1, 0)]≈ = [(0, u2)]≈. To see that C is pointed, simply note that [(x, y)]≈ ∈ C∩(−C)
if and only if we can choose x ∈ C1, y ∈ C2 and for some α ∈ R we have x+αu1 ∈ (−C1) and y−αu2 ∈ (−C2). This
implies 0 ≤ x ≤ −αu1 in (V1, C1) so that α ≤ 0. At the same time, 0 ≤ y ≤ αu2 in (V2, C2), so that α ≥ 0. This
implies α = 0 and consequently (x, y) = (0, 0).
Now we can define the direct convex sum of effect algebras E1 and E2 as

E1 ⊕ E2 := [0, u] ⊂ C.

We can see that E1 ⊕ E2 is a set of equivalence classes of the form [(λf1, (1 − λ)f2)]≈, where f1 ∈ E1, f2 ∈ E2 and
λ ∈ [0, 1]. Note that E1 ⊕E2 is a convex effect algebra by construction as it is an interval in an ordered vector space.

In the less general circumstances of the general probabilistic theories the direct convex sum of the effect algebras
can be introduced as the effect algebra corresponding to the direct product of state spaces [8, Definition 6].

Proposition 9. The direct convex sum of spectral effect algebras is not a spectral effect algebra.

Proof. In a sense we are going to mimic the proof of Prop. 8 with the only difference that now we will show that there
are two types of contexts on E1⊕E2: they are either of the form {[(a1, 0)]≈, . . . , [(an, 0)]≈} where A = {a1, . . . an} ⊂ E1

is a context, or {[(0, b1)]≈, . . . , [(0, bm)]≈} where B = {b1, . . . bm} ⊂ E2 is a context.
Let f = [(λf1, (1− λ)f2)]≈ ∈ S1(E1 ⊕ E2), then from

[(λf1, (1 − λ)f2)]≈ = λ[(f1, 0)]≈ + (1 − λ)[(0, f2)]≈

we see that both λ[(f1, 0)]≈ and (1−λ)[(0, f2)]≈ must be multiples of f . This implies that there are some t, α ∈ [0, 1]
such that

tλf1 = αu1, (1 − t)(1− λ)f2 = αu2.

Assuming that both f1 and f2 are nonzero, this implies that either both are multiples of identity or λ ∈ {0, 1}.
In both cases, f is of the form f = [g1, 0]≈ for some g1 ∈ E1 or f = [0, g2]≈ for some g2 ∈ E2. It is clear that
[(g1, 0)] ∈ S1(E1⊕E2) if and only if g1 ∈ S1(E1) and similarly for elements of the form [(0, g2)]≈. From the definition,
we can see that in this case, [(g1, 0)]≈ and [(0, g2)]≈ are not summable in E1 ⊕ E2, hence these cannot belong to the
same context.
It follows that all contexts on E1 ⊕ E2 are of the above two types. It is straightforward to see that if neither of f1

or f2 is a multiple of identity and λ ∈ (0, 1), the element [(λf1, (1 − λ)f2)]≈ cannot be given as
∑n

i=1 µi[(ai, 0)]≈ or∑m
j=1 νj [(0, bj)]≈. Hence E1 ⊕ E2 is not spectral.

VI. SHARPLY DETERMINING STATE SPACES

Here we consider a special case of spectral effect algebras, for which stronger properties can be proved.

Definition 11. We say that the state space S(E) is sharply determining if for any sharp f ∈ E and any g ∈ E such
that g � f there is a state s ∈ S(E) such that s(f) = 1 > s(g).

We first obtain a way stronger version of Prop. 4 that is similar to [3, Proposition 18].

Proposition 10. Let E be a spectral effect algebra such that S(E) is sharply determining. Let A,B ⊂ E be contexts,
A = {a1, . . . , an} and B = {b1, . . . bm} such that for some f ∈ E we have f ∈ Ā ∩ B̄, specifically

n∑

i=1

µi




ni∑

ji=1

aij


 = f =

m∑

k=1

νk

(
mk∑

lk=1

blk

)

where µ1 > . . . > µn > 0 and ν1 > . . . > νm > 0. Then we have n = m, µi = νi and
∑ni

ji=1 aij =
∑mi

li=1 bli .

Proof. Denote a′i =
∑ni

ji=1 aij and b′j =
∑mk

lk=1 blk . As a result of Prop. 4 we already know that µ1 = ν1. We will only

show that a′1 = b′1, the result will follow by repeating the same procedure for f − µ1a
′
1 = f − ν1b

′
1.

As first note that a′i and b′i are sharp [6, Theorem 4.8]. Assume that a′1 � b′1 then there is s ∈ S(E) such that
s(b′1) = 1 > s(a′1). We have s(f) =

∑m
k=1 νks(b

′
k) = ν1 = µ1 as well as s(f) =

∑n
i=1 µis(a

′
i) < µ1 which is a

contradiction. Hence we must have a′1 ≥ b′1 and by the same logic we must have also b′1 ≥ a′1 which together yields
a′1 = b′1.
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It was proved in [6, Theorem 4.8] that if S(E) is sharply determining, then all sharp elements are extremal,
moreover, the sum of sharp elements, if it exists, is sharp. If E is also spectral, then it is clear that the sharp
elements are precisely the finite sums of one-dimensional sharp elements. The next results show that in this case E
is sharply dominating, see [9] for a definition, and the set S(E) of all sharp elements with ordering induced from E
is an orthomodular lattice. We will need the following reformulation of the condition in Definition 11. For the proof,
it is enough to realize that f is sharp if and only if 1− f is sharp.

Lemma 3. Let E be a convex effect algebra. Then S(E) is sharply determining if and only if for any sharp f ∈ E
and any g ∈ E such that g � f there is a state s ∈ S(E) such that s(f) = 0 < s(g).

Proposition 11. Let E be a spectral effect algebra with a sharply determining state space and let a =
∑

i µiai be a
spectral decomposition. Then a0 :=

∑
i,µi>0 ai is the smallest sharp element larger than a.

Proof. It is clear that a0 is a sharp element and a ≤ a0. Assume next that b is a sharp element such that a ≤ b. Then
for any s ∈ S(E) such that s(b) = 0 we have s(a) =

∑
i µis(ai) = 0, so that s(ai) = 0 whenever µi > 0. It follows

that s(a0) = 0. By Lemma 3, a0 ≤ b.

Proposition 12. Let E be a spectral effect algebra with a sharply determining state space. Let f, g ∈ E be sharp.
Then (λf + (1 − λ)g)0 does not depend on λ ∈ (1, 0) and we have (λf + (1 − λ)g)0 = f ∨ g in S(E). Moreover, we
have f ∧ g = 1− ((1 − f) ∨ (1− g)).

Proof. Let us first observe that for any f ∈ E and s ∈ S(E), s(f) = 0 iff s(f0) = 0, this is easy to see from the
definition of f0. Let f, g be sharp and for λ ∈ (0, 1) let pλ := (λf + (1 − λ)g)0. Then for s ∈ S(E), s(p1/2) = 0 iff

s(12 (f + g)) = 0 iff s(f) = s(g) = 0 iff s(λf + (1 − λ)g) = 0 iff s(pλ) = 0. By Lemma 3 this implies that pλ = p1/2
for all λ ∈ (0, 1). If h ∈ E is any sharp element such that f, g ≤ h, then s(h) = 0 implies s(f) = s(g) = 0 so that
s(p1/2) = 0, hence p1/2 ≤ h. By [6, Corollary 4.10], h− p1/2 ∈ S(E), this shows that pλ = p1/2 = f ∨ g in S(E). The
last assertion follows by de Morgan laws.

Corollary 1. Let E be a spectral effect algebra with a sharply determining state space. Then S(E) is an orthomodular
lattice.

Proof. By [6, Corollary 4.9], S(E) is a sub-effect algebra in E that is an orthoalgebra and by Proposition 12, S(E) is
a lattice. By [10, Prop. 1.5.8], any lattice ordered orthoalgebra is an orthomodular lattice.

VII. CONCLUSIONS AND OPEN QUESTIONS

In this article we have proved that there can be either only one or uncountably many contexts contained in a
spectral effect algebra as well as few other results concerning spectral effect algebras. There are still quite a few open
questions that will be left for future research.

1. What are the extreme points of a state space of a spectral effect algebra? In Prop. 5 we have shown that all
exposed points of the effect space of a spectral effect algebra have the form s = â for a ∈ S1(E). It is an open
question whether one can show a similar result for the extreme points of the state space.

2. Let A = {a1, . . . , an} be a context and let Â = conv(∪iâi). Since âi are affinely independent, Â = ⊕câi is their
convex direct sum. Let I be a set that indexes all of the contexts Aα of an effect algebra E; does it hold that
S(E) = ∪α∈IÂα? If â are E-exposed points for all a ∈ S1(E), this would be even a stronger result than the
one proposed in the question above.

3. Is the cardinality of contexts always the same? It is straightforward to see that all contexts in the effect algebras
used in quantum theory have the same number of elements. It would be very interesting to know whether this
is true in general or whether there is a counter-example. As we have seen in Prop. 9 there are effect algebras
that have contexts with different numbers of elements, but the given example is not a spectral effect algebra.

4. Is it possible to extend the results of Prop. 4 to a result similar to Prop. 10? The property in question is to
show that

∑n
i=1 µiai = f =

∑m
j=1 νjbj where A = {a1, . . . , an} and B = {b1, . . . , bm} are contexts would imply

that for every µi there is νj such that µi = νj . A stronger version of said result would be to show that Prop. 10
holds for all spectral effect algebras; this can be either done by showing that the state space of every spectral
algebra is sharply determining or by other means.
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5. For a given context A = {a1, . . . , an} is the set of states {â1, . . . , ân} unique? The existence of the states âi
is simply implied by the fact that the effects ai are sharp one-dimensional but it is rather easy to find convex
effect algebras where the set {â1, . . . , ân} is not unique.

6. Does spectrality of the effect algebra implies any kind of weak duality between the effect algebra and the state
space? It is tempting to define a map T : ai 7→ âi but it is of question whether the map would be well defined
and whether the map would be affine. This would be a very strong result to prove or to at least find some
conditions for when it holds. Still all of the examples of spectral effect algebras that we know of have said
property.

7. Are there examples of spectral effect algebras that are not operator algebras nor classical? It is straightforward
to see that the effect algebras for finite-dimensional real or complex quantum theory are spectral. It would be
very interesting and possibly helpful to have other examples of spectral effect algebras.
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