grant APVV-16-0073

Pravdepodobnostné, algebrické a kvantovo-mechanické aspekty neurčitosti
(Probabilistic, Algebraic and Quantum-Mechanical Aspects of Uncertainty)

Trvanie projektu:

07/2017 - 06/2021

Riešiteľské organizácie:

Základné informácie o grante

Ciele projektu:

Sústredíme sa na získavanie originálnych výsledkov popisu neurčitosti súvisiacej s kvantovými štruktúrami a na neurčitosť obsiahnutú v konvexnej šturktúre kvantovo-mechanických meraní. Akcent bude kladený na výskum parciálnych a totálnych algebier akými sú efektové algebry, synaptické algebry, MV-algebry a ich nekomutatívne zovšeobecnenia ako aj na popis kvantových kanálov, stavov, odhadovacích a testovacích úloh kvantovo-mechanických procesov, kategoriálnych vlastností a agregačných funkcií. Tieto výsledky budú slúžiť na prehĺbenie našich poznatkov a upevnenie prestížneho postavenia slovenskej školy kvantových štruktúr v celosvetovom kontexte.

Riešitelia grantu

MÚ SAV

Svf STU, Bratislava

Publikácie 2019

  1. A. Dvurečenskij, O. Zahiri, On EMV-algebras, Fuzzy Sets and Systems 373 (2019), 116–148.
    https://doi.org/10.1016/j.fss.2019.02.013 CC
  2. A. Dvurečenskij, O. Zahiri, The Loomis–Sikorski theorem for EMV-algebras, J. Austral. Math. Soc. 106 (2019), 200–234.
    https://doi.org/10.1017/S1446788718000101 CC
  3. A. Dvurečenskij, O. Zahiri, Generalized pseudo-EMV-effect algebras, Soft Computing 23 (2019), 9807–9819.
    https://doi.org/10.1007/s00500-019-03880-0 CC
  4. A. Di Nola, A. Dvurečenskij, G. Lenzi, Observables on perfect MV-algebras, Fuzzy Sets and Systems 369 (2019), 57–81.
    https://doi.org/10.1016/j.fss.2018.11.018 CC
  5. A. Dvurečenskij, Perfect effect algebras and spectral resolutions of observables, Found. Phys. 49 (2019), 607–628.
    https://doi.org/10.1007/s10701-019-00238-2 CC
  6. A. Dvurečenskij, O. Zahiri, EMV-pairs, Inter. J. General Systems 48 (2019), 382–405.
    https://doi.org/10.1080/03081079.2019.1584893 CC
  7. A. Dvurečenskij, Observables on lexicographic MV-algebras, Inter. J. General Systems 48 (2019), 738–774.
    https//doi.org/10.1080/03081079.2019.1643338 CC
  8. A. Dvurečenskij, O. Zahiri, States on EMV-algebras, Soft Computing 23 (2019), 7513 7536.
    https://doi.org/10.1007/s00500-018-03738-x CC
  9. A. Dvurečenskij, O. Zahiri, Pseudo EMV-algebras. I. Basic properties, J. Appl. Logic 6 (7) (2019), 1285–1327. SCI
  10. A. Dvurečenskij, O. Zahiri, Pseudo EMV-algebras. II. Representation and states, J. Appl. Logic 6 (7) (2019), 1329–1372. SCI
  11. A. Dvurečenskij, D. Lachman, Observables on lexicographic effect algebras, Algebra Universalis 80 (2019), Art. 49.
    https://doi.org/10.1007/s00012-019-0628-y CC
  12. R. Halaš, R. Mesiar, J. Pócs, On generating sets of the clone of aggregation functions on finite lattices, Information Sciences 476 (2019), pp. 38–47.
  13. R. Halaš, R. Mesiar, J. Pócs, On generation of aggregation functions on infinite lattices, Soft Computing 23 (2019), 7279–7286. CC
  14. G. Jenča, Two monads on the category of graphs, Math. Slovaca 69 (2019), 257–266.
    https://doi.org/10.1515/ms-2017-0220
  15. A. Jenčová, M. Plávala, On the properties of spectral effect algebras, Quantum 3 (2019), 148. (ADM)
  16. T. Heinosaari, L. Leppäjärvi, M. Plávala, No-free-information principle in general probabilistic theories, Quantum 3 (2019), 157.
    https://doi.org/10.22331/q-2019-07-08-157
  17. D. J. Foulis, S. Pulmannová, Spectral order on a synaptic algebra, Order 36 (2019), 1–17.
  18. S. Pulmannová, Congruences and ideals in generalized pseudoeffect algebras revisited, Soft Comput. 23 (2019), 735–745. CC

Články prijaté CC

  1. G. Jenča, Pseudo effect algebras are algebras over bounded posets, Fuzzy Sets and Systems, (2020)
    https://doi.org/10.1016/j.fss.2019.07.003
  2. R. Carbone, A. Jenčová, On period, cycles and fixed points of a quantum channel, Ann. Henri Poincaré, (2019)
    https://doi.org/10.1007/s00023-019-00861-9

Články výjdené nie CC

  1. R. Halaš, J. Pócs, Aggregation via Clone Theory Approach. In: Halaš R., Gagolewski M., Mesiar R. (eds) New Trends in Aggregation Theory. AGOP 2019. Advances in Intelligent Systems and Computing, 981 (2019), 244–254.
  2. P. Butka, J. Pócs, J. Pócsová, Isotone Galois Connections and Generalized One-Sided Concept Lattices. In: Choroś K., Kopel M., Kukla E., Siemiński A. (eds) Multimedia and Network Information Systems. MISSI 2018. Advances in Intelligent Systems and Computing, vol. 833 (2019), p. 151–160.
  3. P. Butka, J. Pócs, J. Pócsová, Note on Aggregation Functions and Concept Forming Operators. In: Halaš R., Gagolewski M., Mesiar R. (eds) New Trends in Aggregation Theory. AGOP 2019. Advances in Intelligent Systems and Computing, vol. 981 (2019), p. 279–288.
  4. D. Babicová, R. Frič, Real functions in stochastic dependence, Tatra Mt. Math. Publ. 74 (2019), 17–34.
    https://doi.org/10.2478/tmmp-2019-0016
  5. R. Frič, Product of measurable spaces and applications, Tatra Mt. Math. Publ. 74 (2019), 47–56.
    https://doi.org/10.2478/tmmp-2019-0018

Výsledky 2018

  1. A. Dvurečenskij, O. Zahiri, Morphisms on EMV-algebra and their applications. Soft Computing 22 (2018), 7519–7537.
    https://doi.org/10.1007/s00500-018-3039-7 CC
  2. M. Botur, A. Dvurečenskij, Kites and residuated lattices, Algebra Universalis 79 (2018), Art. 83. 26 p.
    DOI: 10.1007/s00012-018-0564-2 CC
  3. R.A. Borzooei, A. Dvurečenskij, A.H. Sharafi, Generalized EMV-effect algebras, Inter. J. Theor. Phys. 57 (2018), 2267–2279.
    https://doi.org/10.1007/s10773-018-3 CC
  4. A. Dvurečenskij, Quantum observables and effect algebras, Inter. J. Theor. Phys. 57 (2018), 637–651.
    DOI: 10.1007/s10773-017-3594-1 CC
  5. A. Dvurečenskij, Riesz space-valued states on pseudo MV-algebras, Journal of Logics and their Applications 5 (2018), 1723–1764. SCI
  6. A. Dvurečenskij, Prof. RNDr. Beloslav Riečan, DrSc., Dr.h.c., * Nov. 10, 1936 — † Aug. 13, 2018, Math. Slovaca 68 (2018), 951–956. SCI
  7. G. Jenča, Effect algebras as presheaves on finite Boolean algebras, Order 35 (2018), 525–540. CC
  8. A. Jenčová, Rényi Relative Entropies and Noncommutative Lp-Spaces, Annales Henri Poincare 19 (2018), 2513–2542. CC
  9. A. Jenčová, Incompatible measurements in a class of general probabilistic theories, Physical Review A 98 (2018), art. nr. 12133. CC
  10. R. Halaš, Z. Kurač, R. Mesiar, J. Pócs, Binary generating set of the clone of idempotent aggregation functions on bounded lattices, Information Sciences 462 (2018), 367–373. CC
  11. O. Hutník, J. Pócs, On *-associated comonotone functions, Kybernetika, 54 (2018), No. 2, 268–278. CC
  12. S. Pulmannová, Corrignedum to Banach synaptic algebras, Inter. J. Theore. Phys. 57 (2018), 3772–3775. CC
  13. D.J. Foulis, S. Pulmannová, Banach synaptic algebras, Inter. J. Theor. Phys. 57 (2018), 1103–1119.
    https://doi.org/10.1007/s10773-017-3641-y CC