Mathematical Institute, Slovak Academy of Sciences

Structure of associative fusion functions

Andrea Mesiarová-Zemánková

zemankova@mat.savba.sk

Smolenice, October 2024

Function $F \colon [0,1]^n \longrightarrow [0,1] \ (F \colon [0,1]^n \longrightarrow [0,1]^m, \ m \ll n)$

Function $F \colon [0,1]^n \longrightarrow [0,1] \ (F \colon [0,1]^n \longrightarrow [0,1]^m, \ m \ll n)$

76.50 EURO

Function $F\colon [0,1]^n \longrightarrow [0,1] \ (F\colon [0,1]^n \longrightarrow [0,1]^m, \, m \ll n)$

 $12000 \ \mathrm{cars}$

Function $F\colon [0,1]^n \longrightarrow [0,1] \ (F\colon [0,1]^n \longrightarrow [0,1]^m, \, m \ll n)$

1.3 average grade

Representation of a group of people

Representation of a group of people

8 people in the group

Representation of a group of people

sum of their weights is $624.5~\mathrm{kg}$

Representation of a group of people

 $maximum\ height\ is\ 187cm$

Function $F \colon [0,1]^n \longrightarrow [0,1] \ (F \colon [0,1]^n \longrightarrow [0,1]^m, \ m \ll n)$

Function $F\colon [0,1]^n \longrightarrow [0,1] \ (F\colon [0,1]^n \longrightarrow [0,1]^m, \, m \ll n)$

Domains

- \triangleright [0, 1], [a, b]
- ▶ (Bounded) lattices, posets
- ▶ Betweenness sets, etc.

Associative fusion functions

- \triangleright *n*-ary form is uniquely given
- new inputs are added with almost no computational cost
- ▶ knowledge from the theory of semigroups
- ▶ knowledge from the theory of functional equations
- structures, results and approaches can be used for more general functions

Associative fusion functions – additional properties

- ► Commutativity
- ► Monotonicity
- ► Idempotency
- Continuity
- ▶ Neutral element, annihilator

Aggregation functions

Aggregation function is a non-decreasing fusion function such that

$$A(0,...,0) = 0$$
 and $A(1,...,1) = 1$

Aggregation functions

Aggregation function is a non-decreasing fusion function such that

$$A(0,\ldots,0) = 0$$
 and $A(1,\ldots,1) = 1$

Commutative, associative and monotone fusion functions (CAM fusion functions)

Aggregation functions

Aggregation function is a non-decreasing fusion function such that

$$A(0,...,0) = 0$$
 and $A(1,...,1) = 1$

Commutative, associative and monotone fusion functions (CAM fusion functions)

Triangular norm is CAM aggregation function with neutral element 1

Triangular norms – construction methods

- ► Isomorphism
- Additive generator (transf. of $([0,\infty],+),([0,1],\oplus)$)
- ▶ Rotation, Rotation annihilation
- ► Completion methods

Triangular norms – construction methods

- ► Isomorphism
- ▶ Additive generator (transf. of $([0, \infty], +), ([0, 1], \oplus))$
- ► Rotation, Rotation annihilation
- ► Completion methods
 - ▶ Ordinal sum
- ► Many others

Ordinal sum construction

$$x*y = \begin{cases} x*_{\alpha}y & \text{if } (x,y) \in X_{\alpha} \times X_{\alpha}, \\ x & \text{if } (x,y) \in X_{\alpha} \times X_{\beta} \text{ and } \alpha \prec \beta, \\ y & \text{if } (x,y) \in X_{\alpha} \times X_{\beta} \text{ and } \beta \prec \alpha. \end{cases}$$

Representation of t-norms

- ightharpoonup The only idempotent t-norm is the minimum t-norm $T_{\mathbf{M}}$
- ► Each continuous t-norm can be expressed as an ordinal sum of a countable number of continuous Archimedean t-norms
- ► Each continuous Archimedean t-norm possesses a continuous additive generator

Triangular conorms

Triangular conorm is CAM aggregation function with neutral element 0

For each t-norm $T: [0,1]^2 \longrightarrow [0,1]$ the function $S: [0,1]^2 \longrightarrow [0,1]$ given by

$$S(x,y) = 1 - T(1 - x, 1 - y)$$

is a t-conorm

Uninorms

Uninorm is CAM aggregation function with neutral element $e \in [0, 1]$

Uninorms

Uninorm is CAM aggregation function with neutral element $e \in [0, 1]$

Uninorms with continuous additive generator are called representable (transformation of $([-\infty, \infty], +)$)

Uninorms with continuous underlying functions

U_1^*	max	U_1^*
min	U_2^*	max
U_1^*	min	U_1^*

r	S^*		
min	U_1^*	max	
T^*	min	111001	

Each uninorm with **continuous** underlying functions can be expressed as an **ordinal sum** of a countable number of semigroups related to **continuous Archimedean t-norms and t-conorms, representable uninorms** and a possibly uncountable number of **trivial semigroups**.

n-Uninorms

n-uninorm is CAM aggregation function with n local neutral elements $e_i \in [z_{i-1}, z_i]$ for $i \in \{1, \dots, n\}$

z-ordinal sum

$$x*y = \begin{cases} x*_{\alpha}y & \text{if } (x,y) \in X_{\alpha} \times X_{\alpha}, \\ x & \text{if } (x,y) \in X_{\alpha} \times X_{\beta}, \ \alpha \neq \beta, \text{ and } \alpha \wedge \beta = \alpha \in B, \\ y & \text{if } (x,y) \in X_{\alpha} \times X_{\beta}, \ \alpha \neq \beta, \text{ and } \alpha \wedge \beta = \beta \in B, \\ z_{\gamma} & \text{if } (x,y) \in X_{\alpha} \times X_{\beta}, \ \alpha \neq \beta, \text{ and } \alpha \wedge \beta = \gamma \in A. \end{cases}$$

n-uninorms with continuous underlying functions

Each *n*-uninorm with **continuous** underlying functions can be expressed as a *z*-**ordinal sum** of a countable number of semigroups related to **continuous Archimedean t-norms** and **t-conorms**, **representable uninorms** and a possibly uncountable number of **trivial semigroups**.

n-uninorms with continuous underlying functions

Each *n*-uninorm with **continuous** underlying functions can be expressed as a *z*-**ordinal sum** of a countable number of semigroups related to **continuous Archimedean t-norms** and **t-conorms**, **representable uninorms** and a possibly uncountable number of **trivial semigroups**.

Each commutative, associative binary aggregation function with the **continuous diagonal and continuous Archimedean components** can be expressed as a *z*-ordinal sum of a countable number of semigroups related to **continuous Archimedean t-norms and t-conorms, representable uninorms** and a possibly uncountable number of **trivial semigroups**.

Non-commutative associative aggregation functions

Non-commutative ordinal sum

x	$*_{eta}$	y	*\beta	c	*\beta
*\a	y	*\a	x	$*_{\alpha}$	d
x	$*_{eta}$	y	$*_{eta}$	x	$*_{eta}$
*\alpha	x	*\a	y	$*_{\alpha}$	c
y	$*_{eta}$	c	$*_{eta}$	c	$*_{eta}$
$*_{\alpha}$	c	*\a	x	$*_{\alpha}$	y

Achievements and future work

- Commutative
 - Characterization of uninorms with continuous underlying functions
 - Characterization of n-uninorms with continuous underlying functions
 - Characterization of CAM aggregation functions continuous around the diagonal
- Non-commutative
 - Characterization of pseudo-uninorms with continuous underlying functions
 - Characterization of pseudo-n-uninorms with continuous underlying functions
 - ► Characterization of associative aggregation functions continuous around the diagonal
- Corresponding results on general bounded lattices

Idempotent

General

Thank you very much for your attention.