Problem formulation

Recent VEGA grants

Recent results

Recent publication

Efficient Serial and Parallel Block-Jacobi EVD/SVD Algorithms

Martin Bečka, Gabriel Okša

Institute of Mathematics, Department of Informatics, Slovak Academy of Sciences, Bratislava, Slovakia

65 years of IM SAS, October 13-15, 2024, Smolenice

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Outline

Jacobi EVD/SVD Methods

Problem formulation

Recent VEGA grants

Recent results

Recent publication

1 Problem formulation

2 Recent VEGA grants

Problem formulation

Recent VEGA grants

Recent results

Recent publications

Compute in parallel the Singular Value Decomposition (SVD) of a complex matrix *A* of the size $m \times n$, $m \ge n$:

$$A = U \left(egin{array}{c} \Sigma \\ 0 \end{array}
ight) V^{H},$$

where $U(m \times m)$ and $V(n \times n)$ are orthogonal and $\Sigma = \text{diag}(\sigma_i)$ with $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$. Numerically stable way of computation:

- one- or two-sided block-Jacobi methods;
- large degree of parallelism.

Target architecture:

• distributed memory machines (parallel supercomputers and clusters) with Message Passing Interface (MPI).

Our task

Problem formulation

- Recent VEGA grants
- Recent results
- Recent publications

Applications

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- EVD of symmetric matrices: quantum energy of atoms and molecules.
- Latent Semantic Indexing: processing and searching documents.
- Civil Engineering: eigenfrequencies and eigenmodes of buildings.
- Our international partners:
 - University of Electro-Communications, Tokyo, Japan
 - Institute of Informatics, AS CR, Prague
 - University of Salzburg, Austria
 - University of Zagreb, Croatia

Problem formulation

Recent VEGA grants

Recent results

Recent publications

Recent VEGA grants

- VEGA project no. 2/004/17 "Parallel block algorithms for some canonical matrix decompositions", 2017–2019.
- VEGA project no. 2/0015/20 "Convergence of block algorithms for canonical matrix decompositions", 2020–2022.
- VEGA project no. 2/0001/23 "Efficient block Jacobi algorithms for the matrix EVD/SVD and their numerical properties", 2023–2025.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Problem formulation

Recent VEGA grants

Recent results

Recent publications

Asymptotic quadratic convergence

Having *p* processors, the blocking factor is w = 2p and a matrix is partitioned into the $w \times w$ block structure. Then, under some additional assumptions, there exists such an integer constant W, $w - 1 \le W < 2w(\log w + 1)$, that after W parallel iteration steps one observes the AQC of the off-diagonal Frobenius norm of matrix A:

$$\|\mathrm{off}(\mathcal{A}^{(W)})\|_F \leq \sqrt{12(w-2)} \, rac{\|\mathrm{off}(\mathcal{A}^{(0)})\|_F^2}{\delta}.$$

where $\delta = \sqrt{2}d_c/4$ and d_c is the minimal gap between the centres of the clusters of singular values.

Problem formulation

Recent VEGA grants

Recent results

Recent publication

AQC present

Problem formulation

Recent VEGA grants

Recent results

Recent publication

AQC not present

Problem formulation

Recent VEGA grants

Recent results

Recent publications

 Main idea: Find a 'cheap' orthogonal matrix matrix P such that AP will be close to UΣ in the sense of the proximity of column vector spaces.

Preconditioning

- First approach: Compute the EVD of the symmetric matrix A^TA and use its eigenvectors W as a preconditioner: A → AW, AW is the input into the block-Jacobi SVD algorithm.
- Suitable for well conditioned matrices when the condition number of *A*^T*A* is not too large.
- Second approach: Compute the (partial) polar decomposition of $A = U_p H$ by the Halley iterations (cubic convergence!), then the EVD of the Hermitian factor H, and use its eigenvectors W for precond.
- Since the Gram matrix A^TA is not needed at all, this approach is suitable for very ill conditioned matrices.

Problem formulation

Recent VEGA grants

Recent results

Recent publications

W based on $A^T A$, in parallel

Table: w = 2p, n = 8000, mode = 3, $\kappa(A) = 10^2$

Algorithm		p		
		10	20	
PDGESVD	<i>T</i> [s]	934	645	
PP_OSBJA	<i>T</i> [s]	178	98	
	G+EVD+MM [s]	14+67+23	7+39+12	
	Jacobi [s]	74	40	
	# it	10	22	

(日)((同))(日)((日))(日)

Problem formulation

Recent VEGA grants

Recent results

Recent publications

W based on $A^T A$, in parallel

Table: w = 2p, n = 8000, mode = 3, $\kappa(A) = 10^8$

Algorithm		p		
		10	20	
PDGESVD	<i>T</i> [s]	859	499	
PP_OSBJA	<i>T</i> [s]	408	202	
	G+EVD+MM [s]	14+61+23	7+36+12	
	Jacobi [s]	310	147	
	# it	33	72	

(日)((同))(日)((日))(日)

Problem formulatior

Recent VEGA grants

Recent results

Recent publications

W based on HI, serial algorithm

- 6 iterations in the Halley algorithm are sufficient in the double precision, here we use only one iteration for the partial polar decomposition.
- 3 variants V1–V3 of serial algorithm for the partial polar decomposition were developed, they differ in the QR decomposition of a highly structured matrix of size 8000 × 4000 (not shown).

Precond. W	V1	V2	V3	Gram
maxw	5.4e-4	8.2e-4	1.3e-3	1.0
iter(J)	41	38	39	52
<i>T</i> (<i>J</i>)[s]	45.1	42.4	43.9	72.6
$T_{tot}[s]$	65.9	136.3	98.2	81.6

Table: n = 4000, mode = 3, $\kappa(A) = 10^{10}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Problem formulation

Recent VEGA grants

Recent results

Recent publications

Recent publications

- YAMAMOTO, Y., OKŠA, G., VAJTERŠIC, M., On convergence to eigenvalues and eigenvectors in the block-Jacobi EVD algorithm with dynamic ordering, Lin. Alg. and Its Appl., 622 (2021) 19-45.
- 2 M. BEČKA, G. OKŠA, Preconditioned Jacobi SVD algorithm outperforms PDGESVD, In: Proc. of PPAM 2019, LNCS 12043 (2020), 555-566, Springer Nature Switzerland AG.
- 3 G. OKŠA, Y. YAMAMOTO, M. VAJTERŠIC, *Convergence* to singular triplets in the two-sided block-Jacobi SVD algorithm with dynamic ordering, SIAM Journal on Matrix Anal. and Appl. 43 (2022) 1238-1262.
- 4 G. OKŠA, M. BEČKA, On relative accuracy of the one-sided block-Jacobi SVD algorithm, In: Proc. of PPAM 2022, LNCS 12043 (2023), 464-475, Springer Nature Switzerland AG.