Discrete probability distributions generated by partial summations

Ján Mačutek, Michaela Koščová

Mathematical Institute, Slovak Academy of Sciences

14. októbra 2024

- 2 Repeated partial summations
 - Repeated geometric partial summations
 - Computational study in R
- 3 Matrix eigenvalues and eigenvectors, and repeated partial summations
 - Matrix notation of partial-sums distributions
- 4 Parametrized partial summations

2 Repeated partial summations

- Repeated geometric partial summations
- Computational study in R

3 Matrix eigenvalues and eigenvectors, and repeated partial summations

- Matrix notation of partial-sums distributions
- 4 Parametrized partial summations

Partial summations - definition

$$P_x = \sum_{j=x}^{\infty} g(j) P_j^*, \qquad x = 0, 1, 2, \dots$$

- $\{P_i^*\}_{i=0}^{\infty}$ discrete probability distribution (parent)
- $\{P_x\}_{x=0}^{\infty}$ discrete probability distribution (descendant)
- g(j) real function (which specifies the partial summation)
- some special cases mentioned in the monograph Univariate Discrete Distributions (Johnson, N.L., Kemp, A.W, Kotz, S., 2005, Wiley)

Partial summations - more in detail

.

Partial summations - history

some special cases have real-world motivations

- g(j) = c reliability theory
- g(j) = c/j economy (income underreporting), management (ideal time to order new supplies in a shop)
- from purely mathematical point of view, in the (not so distant) past partial summations were seen as a tool for creating new distributions and/or establishing links between distributions
- relations between properties (moments, probability generating functions) of parents and descendants derived¹

¹Mačutek, J. (2003), On two types of partial summations. *Tatra Mountains Mathematical Publications* 26, 403-410.

Partial summations - present

- any two discrete distributions defined on the same support are connected by partial summation²
- this partial summation is uniquely determined

²Wimmer, G., Mačutek, J. (2012). New integrated view at partial-sums distributions. *Tatra Mountains Mathematical Publications* 51, 183-190.

- for all discrete distributions there is g(j) such that the parent and the descendant distributions are the same, i.e., P_x^{*} = P_x for x = 0, 1, 2, ...
- hence, the distribution $\{P_j^*\}_{j=0}^{\infty}$ is invariant with respect to the partial summation given by g(j)
- function g(j) is uniquely determined
- function g(j) is a (new) characteristic of discrete distributions

Invariance - examples

Poisson distribution

$$P_x^* = \sum_{j=x}^{\infty} \frac{j-\lambda+1}{j+1} P_j^*, \qquad x = 0, 1, 2, \dots$$

geometric distribution³

$$P_x^* = \sum_{j=x}^{\infty} p P_j^*, \qquad x = 0, 1, 2, \dots$$

³Wimmer, G., Kalas, J. (1999). A characterization of the geometric distribution. *Tatra Mountains Mathematical Publications* 17, 325-329.

Invariance - general⁴

$$g(j) = 1 - rac{P_{j+1}^*}{P_j^*}, \qquad j = 0, 1, 2, \dots$$

⁴Mačutek, J. (2003). On two types of partial summations. *Tatra Mountains Mathematical Publications* 26, 403-410.

- the world of discrete distributions seen from a new point of view
- new properties of distributions and relations among them appear which are difficult (impossible?) to notice from 'old' perspectives

 for every pair of distributions P_x and P^{*}_x there exists function g(j) such that

$$P_x = \sum_{j=x}^{\infty} g(j) P_j^*, \qquad x = 0, 1, 2, \dots$$

- but function g(j) uniquely determines another distribution (the third one)
- hence, we have a 'family' consisting of three distributions
 in fact, many such families
- what exactly is the relation among the three distributions, in which sense are they related?

2 Repeated partial summations

- Repeated geometric partial summations
- Computational study in R

3 Matrix eigenvalues and eigenvectors, and repeated partial summations

- Matrix notation of partial-sums distributions
- 4 Parametrized partial summations

Repeated partial summations

$$P_x^{(1)} = c_1 \sum_{j=x}^{\infty} g(j) P_j^*, \qquad x = 0, 1, 2, \dots$$
$$P_x^{(2)} = c_2 \sum_{j=x}^{\infty} g(j) P_j^{(1)}, \qquad x = 0, 1, 2, \dots$$
$$\vdots$$
$$P_x^{(n)} = c_n \sum_{j=x}^{\infty} g(j) P_j^{(n-1)}, \qquad x = 0, 1, 2, \dots$$
$$\vdots$$

• we want to find $\lim_{n\to\infty} P_x^{(n)}$, $x=0,1,2,\ldots$, if it exists

2 Repeated partial summations

- Repeated geometric partial summations
- Computational study in R

3 Matrix eigenvalues and eigenvectors, and repeated partial summations

- Matrix notation of partial-sums distributions
- 4 Parametrized partial summations

Repeated geometric partial summations

$$P_x^{(1)} = c_1 \sum_{j=x}^{\infty} P_j^*, \qquad x = 0, 1, 2, \dots$$
$$P_x^{(2)} = c_2 \sum_{j=x}^{\infty} P_j^{(1)}, \qquad x = 0, 1, 2, \dots$$
$$\vdots$$
$$P_x^{(n)} = c_n \sum_{j=x}^{\infty} P_j^{(n-1)}, \qquad x = 0, 1, 2, \dots$$
$$\vdots$$

Repeated geometric partial summations

Theorem⁵

lf

$$\lim_{x\to\infty}\frac{P^*_{x+1}}{P^*_x}=q\in(0,1),$$

then

$$\lim_{n\to\infty}P_x^{(n)}=(1-q)q^x,\qquad x=0,1,2,\ldots$$

⁵Mačutek, J. (2006). A limit property of the geometric distribution. *Theory of Probability and Its Application* 50, 316-319.

Repeated geometric partial summations

Theorem⁵

lf

$$\lim_{x\to\infty}\frac{P^*_{x+1}}{P^*_x}=q\in(0,1),$$

then

$$\lim_{n \to \infty} P_x^{(n)} = (1 - q)q^x, \qquad x = 0, 1, 2, \dots$$

The proof uses probability generating functions

$$G_n(t) = \sum_{j=0}^{n-1} (-1)^j \frac{t^j \prod_{x=0}^j c_{n-x}}{(1-t)^{j+1}} + (-1)^n \frac{t^n \prod_{j=1}^n c_j}{(1-t)^n} G^*(t)$$

⁵Mačutek, J. (2006). A limit property of the geometric distribution. *Theory of Probability and Its Application* 50, 316-319.

2 Repeated partial summations

- Repeated geometric partial summations
- Computational study in R
- 3 Matrix eigenvalues and eigenvectors, and repeated partial summations
 - Matrix notation of partial-sums distributions
- 4 Parametrized partial summations

- parent distribution must have finite support
- we will present results for binomial distribution as the parent
- many different partial summations (i.e., many different functions g(j)) applied to the binomial distribution

Salvia-Bolinger partial summation

$$Q_j = rac{a \prod_{k=1}^{j} (k-a)}{(j+1)!} \implies g(j) = 1 - rac{Q_{j+1}}{Q_j} = rac{a+1}{j+2}$$

$$P_x^{(n)} = c_n \sum_{j=x}^{\infty} \frac{a+1}{j+2} P_j^{(n-1)}, \qquad x = 0, 1, 2, \dots$$

 $n = 1, 2, 3, \dots$

Salvia-Bolinger partial summation

$$P_x^{(1)} = c_1 \sum_{j=x}^{\infty} \frac{a+1}{j+2} P_j^*, \qquad x = 0, 1, 2, \dots$$
$$P_x^{(2)} = c_2 \sum_{j=x}^{\infty} \frac{a+1}{j+2} P_j^{(1)}, \qquad x = 0, 1, 2, \dots$$
$$\vdots$$
$$P_x^{(n)} = c_n \sum_{j=x}^{\infty} \frac{a+1}{j+2} P_j^{(n-1)}, \qquad x = 0, 1, 2, \dots$$
$$\vdots$$

Salvia-Bolinger partial summation

- parent biniomial
 n = 6, p = 0.2
- summation
 Salvia-Bolinger,
 a = 0.5
- limit deterministic??

Poisson partial summation

-a i

$$Q_{j} = \frac{e^{-a}a^{j}}{j!} \implies g(j) = 1 - \frac{Q_{j+1}}{Q_{j}} = \frac{j+1-a}{j+1}$$
$$P_{x}^{(n)} = c_{n} \sum_{j=x}^{\infty} \frac{j+1-a}{j+1} P_{j}^{(n-1)}, \qquad x = 0, 1, 2, \dots$$
$$n = 1, 2, 3, \dots$$

 \sim

.

Poisson partial summation

- parent binomial n = 6, p = 0.2
- summation
 Poisson
 a = 0.5
- limit not deterministic??

2 Repeated partial summations

- Repeated geometric partial summations
- Computational study in R

3 Matrix eigenvalues and eigenvectors, and repeated partial summations

Matrix notation of partial-sums distributions

4 Parametrized partial summations

Power method

- Iet all coordinates of vector \mathbb{P}^* be nonzero
- let matrix *A* have only one dominant eigenvalue λ_D , let $\lambda_D \in \mathbb{R}$
- let v be the eigenvector associated with eigenvalue λ_D

$$\lim_{n \to \infty} \frac{A^{n} \mathbb{P}^{*}}{\|A^{n} \mathbb{P}^{*}\|} = v$$
$$\lim_{n \to \infty} \left(A \frac{A^{n} \mathbb{P}^{*}}{\|A^{n} \mathbb{P}^{*}\|} \right)^{\top} \left(\frac{A^{n} \mathbb{P}^{*}}{\|A^{n} \mathbb{P}^{*}\|} \right) = \lambda_{D}$$

- known also as von Mises iteration algorithm
- used by Google search engine
- \blacksquare convergence depends on $\frac{|\lambda_D|}{|\lambda_2|}$ the higher the ratio, the better
- different norms can be used

2 Repeated partial summations

- Repeated geometric partial summations
- Computational study in R

3 Matrix eigenvalues and eigenvectors, and repeated partial summations

Matrix notation of partial-sums distributions

4 Parametrized partial summations

we consider only distributions defined on finite support

$$P_x = \sum_{j=x}^{q-1} g(j) P_j^*, \qquad x = 0, 1, \dots, q-1 \qquad \Longleftrightarrow \qquad \mathbb{P} = A \mathbb{P}^*$$

$$\mathbb{P}^* = (P_0^*, P_1^*, \dots, P_{q-1}^*)^ op$$
 $A = egin{pmatrix} g(0) & g(1) & \dots & g(q-1) \ 0 & g(1) & \dots & g(q-1) \ dots & dots & \ddots & dots \ 0 & 0 & \dots & g(q-1) \end{pmatrix}$

- > >

neglect for a while normalization constants

.

$$\mathbb{P}^{(1)} = A\mathbb{P}^*$$
$$\mathbb{P}^{(2)} = A\mathbb{P}^{(1)} = AA\mathbb{P}^* = A^2\mathbb{P}^*$$
$$\vdots$$
$$\mathbb{P}^{(n)} = A\mathbb{P}^{(n-1)} = A^n\mathbb{P}^*$$

• the *n*-th descendant has probability mass function

$$\frac{\mathbb{P}^{(n)}}{\|\mathbb{P}^{(n)}\|_1}$$

$$\mathbb{P}^{(\infty)} = \lim_{n \to \infty} \frac{\mathbb{P}^{(n)}}{\|\mathbb{P}^{(n)}\|_1} = \lim_{n \to \infty} \frac{A^n \mathbb{P}^*}{\|A^n \mathbb{P}^*\|_1}$$

Power method

Repeated partial summations

$$\lim_{n\to\infty}\frac{A^n\mathbb{P}^*}{\|A^n\mathbb{P}^*\|_2}=v$$

$$\mathbb{P}^{(\infty)} = \lim_{n \to \infty} \frac{\mathbb{P}^{(n)}}{\|\mathbb{P}^{(n)}\|_1} = \lim_{n \to \infty} \frac{A^n \mathbb{P}^*}{\|A^n \mathbb{P}^*\|_1}$$

$$\mathbb{P}^{(\infty)} = \frac{v}{\|v\|_1}$$

∜

How to find limit distribution?

I. find dominant eigenvalue of matrix A

$$A = egin{pmatrix} g(0) & g(1) & \dots & g(q-1) \ 0 & g(1) & \dots & g(q-1) \ dots & dots & \ddots & dots \ 0 & 0 & \dots & g(q-1) \end{pmatrix}$$

 $\lambda_D = \max_{j \in \{0,1,\dots,q-1\}} |\lambda_j| = \max_{j \in \{0,1,\dots,q-1\}} |g(j)|, \quad \text{if it exists}$

II. find eigenvector v associated with eigenvalue λ_D III. normalize v so that $\sum v_i = 1$, i.e., The binomial or deterministic distribution is the limit distribution for g(j) given by all distributions from Katz family (binomial, negative binomial with geometric as its special case, Poisson).

Repeated partial summations in general

I. let the dominant eigenvalue exist,

$$\lambda_D = g(r), \qquad r \in \{0, 1, \dots, q-1\}$$

II. find eigenvector associated with λ_D

$$(A - \lambda_D I)v = 0$$

$$\begin{pmatrix} g(0) - g(r) & g(1) & \dots & g(q-1) \\ 0 & g(1) - g(r) & \dots & g(q-1) \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & g(q-1) - g(r) \end{pmatrix} \begin{pmatrix} v_0 \\ v_1 \\ \vdots \\ v_{q-1} \end{pmatrix} = 0$$

solution of the system of equations:

$$v_{k} = \begin{cases} \frac{t}{(g(r))^{k}} \prod_{j=1}^{k} (g(r) - g(j-1)), & t \in \mathbb{R} \\ & \text{if } k = 0, 1, \dots, r \\ \\ 0 & \text{if } k = r+1, r+2, \dots, q-1 \end{cases}$$

Partial summations - open problem no. 2 and 3

- how to find the limit distribution if there is no dominant eigenvalue?
- how to find the limit distribution for parents with infinite support?

2 Repeated partial summations

- Repeated geometric partial summations
- Computational study in R

3 Matrix eigenvalues and eigenvectors, and repeated partial summations

Matrix notation of partial-sums distributions

4 Parametrized partial summations

Parametrized partial summations

- consider only discrete distributions with one parameter
- recall invariance for every distribution P* there is function g(j) such that

$$P_x^* = \sum_{j=x}^{\infty} g(j) P_j^*$$

emphasizing the parameter, one can write

$$P_x^*(a) = \sum_{j=x}^{\infty} g(j,a) P_j^*(a)$$

 change now the parameter value while keeping the formula for function g(j), i.e., consider summation

$$P_x = \sum_{j=x}^{\infty} g(j, \lambda) P_j^*(a)$$

Parametrized partial summations - Poisson summation

 Poisson distribution with parameter a is invariant with respect to summation

$$P^*_x(a)=\sum_{j=x}^\infty rac{j-a+1}{j+1}P^*_j(a)$$

consider summation

$$P_x = c \sum_{j=x}^{\infty} \frac{j - \lambda + 1}{j + 1} \frac{e^{-a}a^j}{j!}$$

we have

$$P_0 = \frac{a - \lambda + \lambda e^{-a}}{a(a + 1 - \lambda)}$$

descendant distribution has two parameters

geometric distribution with parameter a is invariant with respect to summation

$$P^*_x(a) = \sum_{j=x}^\infty a P^*_j(a)$$

consider summation

$$P_x = c \sum_{j=x}^{\infty} \lambda a (1-a)^j$$

 in this case, normalization constant *c* 'cancels' the new parameter λ, which means that parent and descendant are the same.

- distributions are either sensitive (e.g., Poisson) or resistant (e.g., geometric) with respect to a change of parameter value in function g(j)
- many distributions are sensitive
- open problem no. 5 what is the common property of resistant distributions?

Ďakujem za pozornosť