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Partial summations - definition

Px =
∞∑
j=x

g(j)P∗
j , x = 0, 1, 2, . . .

{P∗
j }∞j=0 - discrete probability distribution (parent)

{Px}∞x=0 - discrete probability distribution (descendant)
g(j) - real function (which specifies the partial summation)

some special cases mentioned in the monograph Univariate
Discrete Distributions (Johnson, N.L., Kemp, A.W, Kotz,
S., 2005, Wiley)
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Partial summations - more in detail

P0 = g(0)P∗
0 + g(1)P∗

1 + g(2)P∗
2 + . . .

P1 = g(1)P∗
1 + g(2)P∗

2 + . . .

P2 = g(2)P∗
2 + . . .

...
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Partial summations - history

some special cases have real-world motivations
g(j) = c - reliability theory
g(j) = c/j - economy (income underreporting), manage-
ment (ideal time to order new supplies in a shop)

from purely mathematical point of view, in the (not so
distant) past partial summations were seen as a tool
for creating new distributions and/or establishing links
between distributions

relations between properties (moments, probability
generating functions) of parents and descendants derived1

1Mačutek, J. (2003), On two types of partial summations. Tatra
Mountains Mathematical Publications 26, 403-410.
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Partial summations - present

any two discrete distributions defined on the same support
are connected by partial summation2

this partial summation is uniquely determined

2Wimmer, G., Mačutek, J. (2012). New integrated view at partial-sums
distributions. Tatra Mountains Mathematical Publications 51, 183-190.
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Invariance with respect to partial summations

for all discrete distributions there is g(j) such that the
parent and the descendant distributions are the same, i.e.,
P∗
x = Px for x = 0, 1, 2, . . .

hence, the distribution {P∗
j }∞j=0 is invariant with respect

to the partial summation given by g(j)

function g(j) is uniquely determined

function g(j) is a (new) characteristic of discrete
distributions
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Invariance - examples

Poisson distribution

P∗
x =

∞∑
j=x

j − λ+ 1
j + 1

P∗
j , x = 0, 1, 2, . . .

geometric distribution3

P∗
x =

∞∑
j=x

pP∗
j , x = 0, 1, 2, . . .

3Wimmer, G., Kalas, J. (1999). A characterization of the geometric
distribution. Tatra Mountains Mathematical Publications 17, 325-329.
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Invariance - general4

g(j) = 1−
P∗
j+1

P∗
j

, j = 0, 1, 2, . . .

4Mačutek, J. (2003). On two types of partial summations. Tatra
Mountains Mathematical Publications 26, 403-410.
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Partial summations - summary

the world of discrete distributions seen from a new point
of view

new properties of distributions and relations among them
appear which are difficult (impossible?) to notice from
’old’ perspectives
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Partial summations - open problem no. 1

for every pair of distributions Px and P∗
x there exists

function g(j) such that

Px =
∞∑
j=x

g(j)P∗
j , x = 0, 1, 2, . . .

but function g(j) uniquely determines another distribution
(the third one)

hence, we have a ’family’ consisting of three distributions
- in fact, many such families

what exactly is the relation among the three distributions,
in which sense are they related?
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Repeated partial summations

P
(1)
x = c1

∞∑
j=x

g(j)P∗
j , x = 0, 1, 2, . . .

P
(2)
x = c2

∞∑
j=x

g(j)P
(1)
j , x = 0, 1, 2, . . .

...

P
(n)
x = cn

∞∑
j=x

g(j)P
(n−1)
j , x = 0, 1, 2, . . .

...

we want to find limn→∞ P
(n)
x , x = 0, 1, 2, . . . , if it exists
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Repeated geometric partial summations

P
(1)
x = c1

∞∑
j=x

P∗
j , x = 0, 1, 2, . . .

P
(2)
x = c2

∞∑
j=x

P
(1)
j , x = 0, 1, 2, . . .

...

P
(n)
x = cn

∞∑
j=x

P
(n−1)
j , x = 0, 1, 2, . . .

...
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Repeated geometric partial summations

Theorem5

If

lim
x→∞

P∗
x+1

P∗
x

= q ∈ (0, 1),

then
lim
n→∞

P
(n)
x = (1− q)qx , x = 0, 1, 2, . . .

The proof uses probability generating functions

5Mačutek, J. (2006). A limit property of the geometric distribution.
Theory of Probability and Its Application 50, 316-319.
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Computational study in R

parent distribution must have finite support

we will present results for binomial distribution as the
parent

many different partial summations (i.e., many different
functions g(j)) applied to the binomial distribution
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Salvia-Bolinger partial summation

Qj =
a
∏j

k=1(k − a)

(j + 1)!
=⇒ g(j) = 1−

Qj+1

Qj
=

a+ 1
j + 2

P
(n)
x = cn

∞∑
j=x

a+ 1
j + 2

P
(n−1)
j , x = 0, 1, 2, . . .

n = 1, 2, 3, . . .
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Salvia-Bolinger partial summation

P
(1)
x = c1

∞∑
j=x

a+ 1
j + 2

P∗
j , x = 0, 1, 2, . . .

P
(2)
x = c2

∞∑
j=x

a+ 1
j + 2

P
(1)
j , x = 0, 1, 2, . . .

...

P
(n)
x = cn

∞∑
j=x

a+ 1
j + 2

P
(n−1)
j , x = 0, 1, 2, . . .

...
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Salvia-Bolinger partial summation
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Poisson partial summation

Qj =
e−aaj

j!
=⇒ g(j) = 1−

Qj+1

Qj
=

j + 1− a

j + 1

P
(n)
x = cn

∞∑
j=x

j + 1− a

j + 1
P
(n−1)
j , x = 0, 1, 2, . . .

n = 1, 2, 3, . . .
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Poisson partial summation
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Power method

let all coordinates of vector P∗ be nonzero

let matrix A have only one dominant eigenvalue λD , let
λD ∈ R
let v be the eigenvector associated with eigenvalue λD

lim
n→∞

AnP∗

∥AnP∗∥
= v

lim
n→∞

(
A

AnP∗

∥AnP∗∥

)⊤(
AnP∗

∥AnP∗∥

)
= λD
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Remarks on power method

known also as von Mises iteration algorithm

used by Google search engine

convergence depends on |λD |
|λ2| - the higher the ratio, the

better

different norms can be used
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Matrix notation of partial-sums distributions

we consider only distributions defined on finite support

Px =

q−1∑
j=x

g(j)P∗
j , x = 0, 1, . . . , q − 1 ⇐⇒ P = AP∗

P∗ = (P∗
0 ,P

∗
1 , . . . ,P

∗
q−1)

⊤

P = (P0,P1, . . . ,Pq−1)
⊤ A =


g(0) g(1) . . . g(q − 1)
0 g(1) . . . g(q − 1)
...

...
. . .

...
0 0 . . . g(q − 1)


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Matrix notation of repeated partial summations

neglect for a while normalization constants

P(1) =AP∗

P(2) =AP(1) = AAP∗ = A2P∗

...

P(n) =AP(n−1) = AnP∗

...

the n-th descendant has probability mass function P(n)

∥P(n)∥1

P(∞) = lim
n→∞

P(n)

∥P(n)∥1
= lim

n→∞

AnP∗

∥AnP∗∥1
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Relation to power method

Power method

lim
n→∞

AnP∗

∥AnP∗∥2
= v

Repeated partial summations

P(∞) = lim
n→∞

P(n)

∥P(n)∥1
= lim

n→∞

AnP∗

∥AnP∗∥1

⇓

P(∞) =
v

∥v∥1
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How to find limit distribution?

I. find dominant eigenvalue of matrix A

A =


g(0) g(1) . . . g(q − 1)
0 g(1) . . . g(q − 1)
...

...
. . .

...
0 0 . . . g(q − 1)


λD = max

j∈{0,1,...,q−1}
|λj | = max

j∈{0,1,...,q−1}
|g(j)|, if it exists

II. find eigenvector v associated with eigenvalue λD

III. normalize v so that
∑

vi = 1, i.e.,

v

∥v∥1
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The binomial or deterministic distribution is the limit distribution
for g(j) given by all distributions from Katz family (binomial,
negative binomial with geometric as its special case, Poisson).
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Repeated partial summations in general

I. let the dominant eigenvalue exist,

λD = g(r), r ∈ {0, 1, . . . , q − 1}

II. find eigenvector associated with λD

(A− λD I )v = 0
g(0)− g(r) g(1) . . . g(q − 1)

0 g(1)− g(r) . . . g(q − 1)
...

...
. . .

...
0 0 . . . g(q − 1)− g(r)




v0
v1
...

vq−1

 = 0
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Repeated partial summations in general

solution of the system of equations:

vk =


t

(g(r))k

∏k
j=1(g(r)− g(j − 1)), t ∈ R

if k = 0, 1, . . . , r

0 if k = r + 1, r + 2, . . . , q − 1
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Partial summations - open problem no. 2 and 3

how to find the limit distribution if there is no dominant
eigenvalue?

how to find the limit distribution for parents with infinite
support?
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Parametrized partial summations

consider only discrete distributions with one parameter

recall invariance - for every distribution P∗ there is
function g(j) such that

P∗
x =

∞∑
j=x

g(j)P∗
j

emphasizing the parameter, one can write

P∗
x (a) =

∞∑
j=x

g(j , a)P∗
j (a)
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Parametrized partial summations

change now the parameter value while keeping the formula
for function g(j), i.e., consider summation

Px =
∞∑
j=x

g(j , λ)P∗
j (a)
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Parametrized partial summations - Poisson summation

Poisson distribution with parameter a is invariant with
respect to summation

P∗
x (a) =

∞∑
j=x

j − a+ 1
j + 1

P∗
j (a)

consider summation

Px = c
∞∑
j=x

j − λ+ 1
j + 1

e−aaj

j!

we have

P0 =
a− λ+ λe−a

a(a+ 1− λ)

descendant distribution has two parameters
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Parametrized partial summations - geometric summation

geometric distribution with parameter a is invariant with
respect to summation

P∗
x (a) =

∞∑
j=x

aP∗
j (a)

consider summation

Px = c
∞∑
j=x

λa(1− a)j

in this case, normalization constant c ’cancels’ the new
parameter λ, which means that parent and descendant
are the same.
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distributions are either sensitive (e.g., Poisson) or resistant
(e.g., geometric) with respect to a change of parameter
value in function g(j)

many distributions are sensitive

open problem no. 5 - what is the common property of
resistant distributions?
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Ďakujem za pozornosť
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