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Zero-divisor graphs

In 80’s: 1. Beck introduced the zero-divisor graph of a
commutative ring R: x,y € R are adjacent if x -y = 0.

Conjecture: the chromatic number and the clique number in
this graph are equal provided both are finite.

The conjecture was shown to be false by Anderson and Naseer
(32-element counterexample R, w(R) =5, x(R) = 6).

The concept of zerodivisor graph was further generalized and
studied in other structures:

— 2007 Nimbhorkar, Wasadikhar, DeMeyer: Beck’s conjecture
holds in meet-semilattices with 0.

— 2010 Halas, Jukl and Halas, Langer: Beck’s conjecture holds
for posets (qosets) (with 0).
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Graphs connected with posets have been intensively studied in
extremal graph theory.

Incomparability graph: P poset,  and y adjacent if z || y.

Dilworth’s theorem (1950) states that the Beck’s equality holds
for incomparability graphs of finite posets (min-max problem).

Theorem (Dilworth)

Let P be a finite poset. Then the minimum number m of
disjoint chains covering P is equal to the mazimum number M
of elements in an antichain of P.

In this case w = M (antichain = clique) and y = m, partition of
P into m independent sets (chain = independent set).
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Given poset (P, <) we assign a graph I'(P) = (P, E): its
vertices are elements of P, and p,q € P are connected by an
edge iff L(p,q) = L(P), i.e., pqg € E provided the sets of lower
bounds of p,q and P are the same.

These pairs of elements are called disjoint or orthogonal (p L q).
I'((P, <)) is just the graph (P, L) of the relation L.

The graph I'(P) is called as the zero-divisor graph of (P, <).

Since p L ¢ impies p || ¢, thus zero-divisor graph of P is a
subgraph of the incomparability graph.
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Let (P, <) be a partially ordered set such that w(I'(P)) is finite.
Then the zero-divisor graph I'(P) fulfils the Beck’s conjecture,
i.e., w((P)) = x(T(P)).

Sketch of proof: Let K C P be a clique in I'(P) of maximal
cardinality. There is a graph endomorphism h: P — K, i.e.,
that I'(P) can be colored by w(I'(P)) colors. For v € K we put
h(v) = v. Further, if x ¢ K, then x is not adjacent to some
vertex v € K, otherwise K U {z} would be a larger clique of
I'(P). In this case we put h(z) = v. h is an endomorphism.
Let xy forms an edge in I'(P) and v € K. Then v is either a
neighbour of z or a neighbour of y. If not, then both zv ¢ E
and yv ¢ E. Then z,v and y,v are compatible in P, i.e., there
are r; < z,v and v, <y,v. v L y implies r, L ry.

v L (K~ {v}) implies (K ~ {v}) U {ry,ry} is a larger clique.
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Natural question arises: is the statement true when we omit the
finiteness assumption of w(I'(P))?

reformulation (countable clique):
Given a poset P, does w(I'(P)) = Rg imply x(I'(P)) = Ro?
w(['(P)) = Ny means that all subsets of pairwise disjoint

elements of P are at most countable. Such orders satisfy the
countable chain condition (ccc for short).

X(T'(P)) = Np means that P can be partitioned into countably
many independent sets (independent set = no disjoint pair).
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We describe a family of posets P with w(I'(P)) = 8y and
X(T'(P)) > Ro.

P is called separative if for all p,q € P with p £ ¢ there is
some 1 < p disjoint with q.

Let k and A > 27 be infinite cardinals. If P is a separative poset
of cardinality A\, then P cannot be covered by the union of k
independent sets, i.e., x(T'(P)) > k.

The proof uses partition calculus, the bound A > 2* is from
Erdés-Rado theorem (2%)+ — (k1)2.
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Sketch of proof: Let P = {p; : i < A\} = J,, A¢ be
partitioned into x independent sets.

P is separative, for p; # p; there is r; ; separating p; and p;.

Define a mapping f: [\]> — & where

f(Z,j) =t iff Tij € Ay.

From (A) — (k)2 we obtain that there is x*-element subset S
such that f is constant on S.

For any ,7,k € S we have r; j, 75, ;1 € A for some t < k.

However, at least two of these three r are disjoint, hence A; is
not independent (contradiction).
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Theorem

Let P be a separative poset satisfying the ccc condition, and let
|P| > 2% for some cardinal k > Xg. Then x(I'(P)) > k and
w(T'(P)) = Ng.

Examples of separative posets fulfilling the ccc condition?

For sets I, J, let P(I,J) ={p C I xJ:|p| <Ng,p is a function}
be the set of all finite partial functions from I to J.

For p,q € P(I,J) put p<gqiff ¢ Cp.

If |J] < Rg, then P(I,J) fulfills the countable chain condition.

)
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B, if for all x € BT there is some y € S such that y < z.

Any dense subset S of a Boolean algebra is separative: if
p £ ¢ then ¢’ Ap > 0 and there is r € S such that r < ¢ A p.
Obviously, r and ¢ are disjoint and r < p holds.

Every separative poset P determines a complete Boolean
algebra B(P), such that P C B(P) and P is dense in B(P):
the method of completion uses the notion of a regular cut.
Moreover, Pisccc iff B(P) is ccc.

Theorem

Let k > Ny be a cardinal and B be a Boolean algebra satisfying
the ccc condition, where |B| > 2%. Then x(I'(B)) > k and
w(['(B)) = Ny.

Boolean algebras <= Boolean rings



