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Zero-divisor graphs

In 80’s: I. Beck introduced the zero-divisor graph of a
commutative ring R: x, y ∈ R are adjacent if x · y = 0.

Conjecture: the chromatic number and the clique number in
this graph are equal provided both are finite.

The conjecture was shown to be false by Anderson and Naseer
(32-element counterexample R, ω(R) = 5, χ(R) = 6).

The concept of zerodivisor graph was further generalized and
studied in other structures:

– 2007 Nimbhorkar, Wasadikhar, DeMeyer: Beck’s conjecture
holds in meet-semilattices with 0.

– 2010 Halaš, Jukl and Halaš, La̋nger: Beck’s conjecture holds
for posets (qosets) (with 0).
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Extremal graph theory

Graphs connected with posets have been intensively studied in
extremal graph theory.

Incomparability graph: P poset, x and y adjacent if x || y.

Dilworth’s theorem (1950) states that the Beck’s equality holds
for incomparability graphs of finite posets (min-max problem).

Theorem (Dilworth)

Let P be a finite poset. Then the minimum number m of
disjoint chains covering P is equal to the maximum number M
of elements in an antichain of P .

In this case ω = M (antichain = clique) and χ = m, partition of
P into m independent sets (chain = independent set).
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Zero-divisor graphs of posets

Given poset (P,≤) we assign a graph Γ(P ) = (P,E): its
vertices are elements of P , and p, q ∈ P are connected by an
edge iff L(p, q) = L(P ), i.e., pq ∈ E provided the sets of lower
bounds of p, q and P are the same.

These pairs of elements are called disjoint or orthogonal (p ⊥ q).
Γ((P,≤)) is just the graph (P,⊥) of the relation ⊥.

The graph Γ(P ) is called as the zero-divisor graph of (P,≤).

Since p ⊥ q impies p || q, thus zero-divisor graph of P is a
subgraph of the incomparability graph.
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Zero-divisor graphs of posets – finite case

Theorem

Let (P,≤) be a partially ordered set such that ω(Γ(P )) is finite.
Then the zero-divisor graph Γ(P ) fulfils the Beck’s conjecture,
i.e., ω(Γ(P )) = χ(Γ(P )).

Sketch of proof: Let K ⊆ P be a clique in Γ(P ) of maximal
cardinality. There is a graph endomorphism h : P → K, i.e.,
that Γ(P ) can be colored by ω(Γ(P )) colors. For v ∈ K we put
h(v) = v. Further, if x /∈ K, then x is not adjacent to some
vertex v ∈ K, otherwise K ∪ {x} would be a larger clique of
Γ(P ). In this case we put h(x) = v. h is an endomorphism.
Let xy forms an edge in Γ(P ) and v ∈ K. Then v is either a
neighbour of x or a neighbour of y. If not, then both xv /∈ E
and yv /∈ E. Then x, v and y, v are compatible in P , i.e., there
are rx ≤ x, v and ry ≤ y, v. x ⊥ y implies rx ⊥ ry.
v ⊥ (K ∖ {v}) implies (K ∖ {v}) ∪ {rx, ry} is a larger clique.
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Zero-divisor graphs of posets – infinite case

Natural question arises: is the statement true when we omit the
finiteness assumption of ω(Γ(P ))?

reformulation (countable clique):

Given a poset P , does ω(Γ(P )) = ℵ0 imply χ(Γ(P )) = ℵ0?

ω(Γ(P )) = ℵ0 means that all subsets of pairwise disjoint
elements of P are at most countable. Such orders satisfy the
countable chain condition (ccc for short).

χ(Γ(P )) = ℵ0 means that P can be partitioned into countably
many independent sets (independent set = no disjoint pair).
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Zero-divisor graphs of posets – infinite case

We describe a family of posets P with ω(Γ(P )) = ℵ0 and
χ(Γ(P )) > ℵ0.

P is called separative if for all p, q ∈ P with p ≰ q there is
some r ≤ p disjoint with q.

Theorem

Let κ and λ > 2κ be infinite cardinals. If P is a separative poset
of cardinality λ, then P cannot be covered by the union of κ
independent sets, i.e., χ(Γ(P )) > κ.

The proof uses partition calculus, the bound λ > 2κ is from
Erdős-Rado theorem (2κ)+ → (κ+)2κ.
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Erdős-Rado theorem (2κ)+ → (κ+)2κ.



Zero-divisor graphs of posets – infinite case

We describe a family of posets P with ω(Γ(P )) = ℵ0 and
χ(Γ(P )) > ℵ0.

P is called separative if for all p, q ∈ P with p ≰ q there is
some r ≤ p disjoint with q.

Theorem

Let κ and λ > 2κ be infinite cardinals. If P is a separative poset
of cardinality λ, then P cannot be covered by the union of κ
independent sets, i.e., χ(Γ(P )) > κ.

The proof uses partition calculus, the bound λ > 2κ is from
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Zero-divisor graphs of posets – infinite case

Sketch of proof: Let P = {pi : i < λ} =
⋃

t<κAt be
partitioned into κ independent sets.

P is separative, for pi ̸= pj there is ri,j separating pi and pj .

Define a mapping f : [λ]2 → κ where

f(i, j) = t iff ri,j ∈ At.

From (λ) → (κ+)2κ we obtain that there is κ+-element subset S
such that f is constant on S.

For any i, j, k ∈ S we have ri,j , rj,k, ri,k ∈ At for some t < κ.

However, at least two of these three r are disjoint, hence At is
not independent (contradiction).



Zero-divisor graphs of posets – infinite case

Sketch of proof: Let P = {pi : i < λ} =
⋃

t<κAt be
partitioned into κ independent sets.

P is separative, for pi ̸= pj there is ri,j separating pi and pj .

Define a mapping f : [λ]2 → κ where

f(i, j) = t iff ri,j ∈ At.

From (λ) → (κ+)2κ we obtain that there is κ+-element subset S
such that f is constant on S.

For any i, j, k ∈ S we have ri,j , rj,k, ri,k ∈ At for some t < κ.

However, at least two of these three r are disjoint, hence At is
not independent (contradiction).



Zero-divisor graphs of posets – infinite case

Sketch of proof: Let P = {pi : i < λ} =
⋃

t<κAt be
partitioned into κ independent sets.

P is separative, for pi ̸= pj there is ri,j separating pi and pj .

Define a mapping f : [λ]2 → κ where

f(i, j) = t iff ri,j ∈ At.

From (λ) → (κ+)2κ we obtain that there is κ+-element subset S
such that f is constant on S.

For any i, j, k ∈ S we have ri,j , rj,k, ri,k ∈ At for some t < κ.

However, at least two of these three r are disjoint, hence At is
not independent (contradiction).



Zero-divisor graphs of posets – infinite case

Sketch of proof: Let P = {pi : i < λ} =
⋃

t<κAt be
partitioned into κ independent sets.

P is separative, for pi ̸= pj there is ri,j separating pi and pj .

Define a mapping f : [λ]2 → κ where

f(i, j) = t iff ri,j ∈ At.

From (λ) → (κ+)2κ we obtain that there is κ+-element subset S
such that f is constant on S.

For any i, j, k ∈ S we have ri,j , rj,k, ri,k ∈ At for some t < κ.

However, at least two of these three r are disjoint, hence At is
not independent (contradiction).



Zero-divisor graphs of posets – infinite case

Sketch of proof: Let P = {pi : i < λ} =
⋃

t<κAt be
partitioned into κ independent sets.

P is separative, for pi ̸= pj there is ri,j separating pi and pj .

Define a mapping f : [λ]2 → κ where

f(i, j) = t iff ri,j ∈ At.

From (λ) → (κ+)2κ we obtain that there is κ+-element subset S
such that f is constant on S.

For any i, j, k ∈ S we have ri,j , rj,k, ri,k ∈ At for some t < κ.

However, at least two of these three r are disjoint, hence At is
not independent (contradiction).



Zero-divisor graphs of posets – infinite case

Sketch of proof: Let P = {pi : i < λ} =
⋃

t<κAt be
partitioned into κ independent sets.

P is separative, for pi ̸= pj there is ri,j separating pi and pj .

Define a mapping f : [λ]2 → κ where

f(i, j) = t iff ri,j ∈ At.

From (λ) → (κ+)2κ we obtain that there is κ+-element subset S
such that f is constant on S.

For any i, j, k ∈ S we have ri,j , rj,k, ri,k ∈ At for some t < κ.

However, at least two of these three r are disjoint, hence At is
not independent (contradiction).



Zero-divisor graphs of posets – infinite case

Theorem

Let P be a separative poset satisfying the ccc condition, and let
|P | > 2κ for some cardinal κ ≥ ℵ0. Then χ(Γ(P )) > κ and
ω(Γ(P )) = ℵ0.

Examples of separative posets fulfilling the ccc condition?

For sets I, J , let P (I, J) = {p ⊆ I × J : |p| < ℵ0, p is a function}
be the set of all finite partial functions from I to J .

For p, q ∈ P (I, J) put p ≤ q iff q ⊆ p.

If |J | ≤ ℵ0, then P (I, J) fulfills the countable chain condition.



Zero-divisor graphs of posets – infinite case

Theorem

Let P be a separative poset satisfying the ccc condition, and let
|P | > 2κ for some cardinal κ ≥ ℵ0. Then χ(Γ(P )) > κ and
ω(Γ(P )) = ℵ0.

Examples of separative posets fulfilling the ccc condition?

For sets I, J , let P (I, J) = {p ⊆ I × J : |p| < ℵ0, p is a function}
be the set of all finite partial functions from I to J .

For p, q ∈ P (I, J) put p ≤ q iff q ⊆ p.

If |J | ≤ ℵ0, then P (I, J) fulfills the countable chain condition.



Zero-divisor graphs of posets – infinite case

Theorem

Let P be a separative poset satisfying the ccc condition, and let
|P | > 2κ for some cardinal κ ≥ ℵ0. Then χ(Γ(P )) > κ and
ω(Γ(P )) = ℵ0.

Examples of separative posets fulfilling the ccc condition?

For sets I, J , let P (I, J) = {p ⊆ I × J : |p| < ℵ0, p is a function}
be the set of all finite partial functions from I to J .

For p, q ∈ P (I, J) put p ≤ q iff q ⊆ p.

If |J | ≤ ℵ0, then P (I, J) fulfills the countable chain condition.



Zero-divisor graphs of posets – infinite case

Theorem

Let P be a separative poset satisfying the ccc condition, and let
|P | > 2κ for some cardinal κ ≥ ℵ0. Then χ(Γ(P )) > κ and
ω(Γ(P )) = ℵ0.

Examples of separative posets fulfilling the ccc condition?

For sets I, J , let P (I, J) = {p ⊆ I × J : |p| < ℵ0, p is a function}
be the set of all finite partial functions from I to J .

For p, q ∈ P (I, J) put p ≤ q iff q ⊆ p.

If |J | ≤ ℵ0, then P (I, J) fulfills the countable chain condition.



Zero-divisor graphs of posets – infinite case

Theorem

Let P be a separative poset satisfying the ccc condition, and let
|P | > 2κ for some cardinal κ ≥ ℵ0. Then χ(Γ(P )) > κ and
ω(Γ(P )) = ℵ0.

Examples of separative posets fulfilling the ccc condition?

For sets I, J , let P (I, J) = {p ⊆ I × J : |p| < ℵ0, p is a function}
be the set of all finite partial functions from I to J .

For p, q ∈ P (I, J) put p ≤ q iff q ⊆ p.

If |J | ≤ ℵ0, then P (I, J) fulfills the countable chain condition.



Zero-divisor graphs of Boolean algebras

B – Boolean algebra. A subset S of B+ = B ∖ {0} is dense in
B, if for all x ∈ B+ there is some y ∈ S such that y ≤ x.

Any dense subset S of a Boolean algebra is separative: if
p ≰ q then q′ ∧ p > 0 and there is r ∈ S such that r ≤ q′ ∧ p.
Obviously, r and q are disjoint and r ≤ p holds.

Every separative poset P determines a complete Boolean
algebra B(P ), such that P ⊆ B(P ) and P is dense in B(P ):
the method of completion uses the notion of a regular cut.
Moreover, P is ccc iff B(P ) is ccc.

Theorem

Let κ ≥ ℵ0 be a cardinal and B be a Boolean algebra satisfying
the ccc condition, where |B| > 2κ. Then χ(Γ(B)) > κ and
ω(Γ(B)) = ℵ0.

Boolean algebras ⇐⇒ Boolean rings
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