Constructing the free orthomodular poset over an orthoposet

Peter Eliaš

Mathematical Institute, Slovak Academy of Sciences, Košice, Slovakia

Motivation

Denote BPI the category of bounded posets with an involution, and OMP the category of orthomodular posets.

Theorem (Jenča, 2022)

The forgetful functor from the category OMP into the category BPI has a monadic left adjoint functor.

The proof of the above theorem is *non-constructive*. Our aim is to describe this adjoint functor in an *explicit* way.

▶ Jenča, G., Orthomodular posets are algebras over bounded posets with involution, Soft Computing 26 (2022), 491–498.

Categories and functors

- Category is a collection of objects and morphisms (transformations of objects). Morphisms can be composed.
- ▶ Functor from a category $\mathcal C$ into a category $\mathcal D$ maps objects/morphisms of $\mathcal C$ into objects/morphisms of $\mathcal D$ so that this mapping plays well with the definitions of both categories.

Bounded posets with an involution

Let (P, \leq) be a poset. An unary operation $': P \to P$ is an involution if

- 1. (x')' = x for all $x \in P$,
- 2. $x \le y$ iff $y' \le x'$ for all $x, y \in P$.

A structure $(P, \leq, ', 0, 1)$ is a bounded poset with an involution (BPI) if (P, \leq) is a poset with involution ', bottom element 0, and top element 1.

Let P, Q be BPIs. A map $f: P \rightarrow Q$ is a BPI-morphism if

- 1. $x \le y \Rightarrow f(x) \le f(y)$ for all $x, y \in P$,
- 2. f(x') = (f(x))' for all $x \in P$,
- 3. f(0) = 0, f(1) = 1.

Denote BPI the category where objects are bounded posets with an involution and morphisms are BPI-morphisms.

Orthoposets and orthomodular posets

An orthoposet (OP) is a BPI P such that $x \wedge x' = 0$ for all $x \in P$.

Denote OP the category where objects are orthoposets and morphisms are BPI-morphisms.

An orthomodular poset (OMP) is an OP P such that

- 1. for all $x, y \in P$, if $x \le y'$ then $x \lor y$ exists in P,
- 2. for all $x, y \in P$, if $x \le y'$ then $x \lor (x \lor y)' = y$.

Let P,Q be OMPs. A map $f\colon P\to Q$ is an OMP-morphism if it is a BPI-morphism and

for all
$$x, y \in P$$
, if $x \le y'$ then $f(x \lor y) = f(x) \lor f(y)$.

Denote $\ensuremath{\mathsf{OMP}}$ the category where objects are OMPs and morphisms are OMP-morphisms.

Examples of orthomodular posets

- Every Boolean algebra is an OMP.
- ▶ There exist OMPs which are not Boolean algebras.
- ▶ There exist OMPs which are not lattices.
- ▶ There exist OMPs which are non-distributive lattices.
- Every OMP can be obtained as a pasting of Boolean algebras.

Natural transformations and adjunctions

Let \mathcal{C},\mathcal{D} be categories and let $F\colon \mathcal{C}\longrightarrow \mathcal{D}$, $G\colon \mathcal{C}\longrightarrow \mathcal{D}$ be functors. A natural transformation $\alpha\colon F\Longrightarrow G$ maps every object x of the category \mathcal{C} into a morphism α_x of the category \mathcal{D} so that it *plays well* with both functors. Namely, for every morphism $f\colon X\to Y$ of \mathcal{C} , the following holds in \mathcal{D} :

Let \mathcal{C},\mathcal{D} be categories and let $F:\mathcal{C}\longrightarrow\mathcal{D},\ G:\mathcal{D}\longrightarrow\mathcal{C}$ be functors. An adjunction $F\dashv G$ is a pair of natural transformations $\eta\colon 1_{\mathcal{C}}\Longrightarrow GF$, $\varepsilon\colon FG\Longrightarrow 1_{\mathcal{D}}$.

Forgetful and free functors

An object/morphism in category OMP can be viewed as an object/morphism in category BPI.

This can be expressed as a functor $U \colon \mathsf{OMP} \longrightarrow \mathsf{BPI}$, defined by UP = P and Uf = f, for every OMP P and every OMP-morphism f.

Such functor U is called "forgetful" since it forgets some structure or properties. If there exists an adjunction $F \dashv U$ then functor F is called "free".

Our aim is to construct the free functor $F : BPI \longrightarrow OMP$.

We will do it in two steps. We construct free functors $F_1 \colon \mathsf{BPI} \longrightarrow \mathsf{OP},$ $F_2 \colon \mathsf{OP} \longrightarrow \mathsf{OMP},$ and then we take $F = F_2 F_1.$

From BPIs to OPs

Let P be a BPI. Define a function $f_P \colon P \to P$ by

$$f_P(x) = egin{cases} 0 & x \leq x' \ 1 & x' \leq x \ x & ext{otherwise} \end{cases}$$

Denote $P^* = f_P[P]$. Then P^* is an OP and $f_P \colon P \to P^*$ is a BPI-morphism.

Theorem

For every OP Q and every BPI-morphism $g: P \to Q$ there exists a unique OP-morphism $h: P^* \to Q$ such that $g = h \circ f_P$.

This is sufficient to define the free functor $F_1: BPI \longrightarrow OP$.

Namely, $F_1P=P^*$ for every BPI P, $F_1f=f_Q\circ f\circ i_P$ for every BPI-morphism $f\colon P\to Q$, where $i_P\colon P^*\to P$ is the inclusion map.

Let P be an OP.

Denote $\mathcal{L}_{\mathcal{P}}$ the language consisting of an unary operation symbol ', a binary operation symbol +, and a constant c_x for every element $x \in P$.

Denote \mathcal{T}_P the set of all terms in the language \mathcal{L}_P .

Given an OMP Q and a BPI-morphism $f\colon P\to Q$, let val_f be a function with the smallest domain from a subset of \mathcal{T}_P into Q such that:

- 1. $\operatorname{val}_f(c_x) = f(x)$, for every $x \in P$,
- 2. $\operatorname{val}_f(\tau') = \operatorname{val}_f(\tau)'$, for every $\tau \in \operatorname{dom}(\operatorname{val}_f)$,
- 3. $\operatorname{val}_f(\tau + \sigma) = \operatorname{val}_f(\tau) \vee \operatorname{val}_f(\sigma)$, for every $\tau, \sigma \in \operatorname{dom}(\operatorname{val}_f)$ such that $\operatorname{val}_f(\tau) \leq \operatorname{val}_f(\sigma)'$.

We say that a term $\tau \in \mathcal{T}_P$ is well-formed if $\tau \in \text{dom}(\text{val}_f)$ for every OMP Q and every BPI-morphism $f \colon P \to Q$. Denote \mathcal{W}_P the set of all well-formed terms $\tau \in \mathcal{T}_P$.

For $\tau, \sigma \in \mathcal{W}_P$, let $\tau \leq \sigma$ iff $\operatorname{val}_f(\tau) \leq \operatorname{val}_f(\sigma)$ holds for every OMP Q and every BPI-morphism $f \colon P \to Q$.

Let $\tau \approx \sigma$ if $\tau \preceq \sigma$ and $\sigma \preceq \tau$. Then \preceq is a preorder and \approx is an equivalence relation.

Let \mathcal{F}_P be the quotient \mathcal{W}_P/\approx , that is, the elements of \mathcal{F}_P are the equivalence classes $[\tau]_\approx = \{\sigma \in \mathcal{W}_P \colon \tau \approx \sigma\}$. The set \mathcal{F}_P is partially ordered by the relation \leq where $[\tau]_\approx \leq [\sigma]_\approx$ iff $\tau \leq \sigma$.

Fact

Let $\tau, \sigma \in \mathcal{W}_P$.

- 1. $\tau \approx \sigma$ iff $\tau' \approx \sigma'$,
- 2. if $\tau \preceq \sigma'$ then $\tau + \sigma \in \mathcal{W}_P$ and $[\tau + \sigma]_{\approx} = [\tau]_{\approx} \vee [\sigma]_{\approx}$.

This allows us to define $([\tau]_{\approx})' = [\tau']_{\approx}$. Denote $\mathbf{0} = [0]_{\approx}$, $\mathbf{1} = [1]_{\approx}$.

Fact

- 1. The structure $P^* = (\mathcal{F}_P, \leq, ', \mathbf{0}, \mathbf{1})$ is an OMP.
- 2. Mapping $f_P \colon P \to P^*$, defined by $f_P(x) = [c_x]_{\approx}$ for all $x \in P$, is a BPI-morphism.

Theorem

For every OMP Q and for every BPI-morphism $g: P \to Q$ there exists a unique OMP-morphism $h: P^* \to Q$ such that $g = h \circ f_P$.

This is again sufficient to define the free functor $F_2: \mathsf{OP} \to \mathsf{OMP}$.

Problems

- 1. Characterize terms $\tau \in \mathcal{W}_P$.
- 2. For $\tau, \sigma \in \mathcal{W}_P$, characterize $\tau \leq \sigma$.

Conjecture

Let P be an OP. Then for every $\tau \in \mathcal{W}_P$ there exists $\sigma \in \mathcal{W}_P$ such that $\tau \approx \sigma$ and for every $x \in P$, constant c_x occurs in σ at most once.

Conjecture

Let P be an OP. Then $\tau \leq \sigma$ iff for every BPI-morphism $f: P \to \{0,1\}$, $\mathsf{val}_f(\tau) \leq \mathsf{val}_f(\sigma)$.