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Motivation

Denote BPI the category of bounded posets with an involution, and OMP the
category of orthomodular posets.

Theorem (Jenča, 2022)
The forgetful functor from the category OMP into the category BPI has a
monadic left adjoint functor.

The proof of the above theorem is non-constructive.
Our aim is to describe this adjoint functor in an explicit way.

I Jenča, G., Orthomodular posets are algebras over bounded posets with
involution, Soft Computing 26 (2022), 491–498.



Categories and functors

I Category is a collection of objects and morphisms (transformations of
objects). Morphisms can be composed.

I Functor from a category C into a category D maps objects/morphisms of
C into objects/morphisms of D so that this mapping plays well with the
definitions of both categories.



Bounded posets with an involution

Let (P,≤) be a poset. An unary operation ′ : P → P is an involution if
1. (x ′)′ = x for all x ∈ P,
2. x ≤ y iff y ′ ≤ x ′ for all x , y ∈ P.

A structure (P,≤,′ , 0, 1) is a bounded poset with an involution (BPI) if (P,≤)
is a poset with involution ′, bottom element 0, and top element 1.

Let P,Q be BPIs. A map f : P → Q is a BPI-morphism if
1. x ≤ y ⇒ f (x) ≤ f (y) for all x , y ∈ P,
2. f (x ′) = (f (x))′ for all x ∈ P,
3. f (0) = 0, f (1) = 1.

Denote BPI the category where objects are bounded posets with an involution
and morphisms are BPI-morphisms.



Orthoposets and orthomodular posets

An orthoposet (OP) is a BPI P such that
x ∧ x ′ = 0 for all x ∈ P.

Denote OP the category where objects are orthoposets and morphisms are
BPI-morphisms.

An orthomodular poset (OMP) is an OP P such that
1. for all x , y ∈ P, if x ≤ y ′ then x ∨ y exists in P,
2. for all x , y ∈ P, if x ≤ y ′ then x ∨ (x ∨ y)′ = y .

Let P,Q be OMPs. A map f : P → Q is an OMP-morphism if it is a
BPI-morphism and

for all x , y ∈ P, if x ≤ y ′ then f (x ∨ y) = f (x) ∨ f (y).

Denote OMP the category where objects are OMPs and morphisms are
OMP-morphisms.



Examples of orthomodular posets

I Every Boolean algebra is an OMP.
I There exist OMPs which are not Boolean algebras.
I There exist OMPs which are not lattices.
I There exist OMPs which are non-distributive lattices.
I Every OMP can be obtained as a pasting of Boolean algebras.



Natural transformations and adjunctions

Let C,D be categories and let F : C −→ D, G : C −→ D be functors.
A natural transformation α : F =⇒ G maps every object x of the category C
into a morphism αx of the category D so that it plays well with both functors.
Namely, for every morphism f : X → Y of C, the following holds in D:
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Let C,D be categories and let F : C −→ D, G : D −→ C be functors.
An adjunction F a G is a pair of natural transformations η : 1C =⇒ GF ,
ε : FG =⇒ 1D.



Forgetful and free functors

An object/morphism in category OMP can be viewed as an object/morphism in
category BPI.

This can be expressed as a functor U : OMP −→ BPI, defined by UP = P and
Uf = f , for every OMP P and every OMP-morphism f .

Such functor U is called “forgetful” since it forgets some structure or properties.
If there exists an adjunction F a U then functor F is called “free”.

Our aim is to construct the free functor F : BPI −→ OMP.

We will do it in two steps. We construct free functors F1 : BPI −→ OP,
F2 : OP −→ OMP, and then we take F = F2F1.



From BPIs to OPs

Let P be a BPI. Define a function fP : P → P by

fP(x) =


0 x ≤ x ′

1 x ′ ≤ x
x otherwise

Denote P∗ = fP [P]. Then P∗ is an OP and fP : P → P∗ is a BPI-morphism.

Theorem
For every OP Q and every BPI-morphism g : P → Q there exists a unique
OP-morphism h : P∗ → Q such that g = h ◦ fP .
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This is sufficient to define the free functor F1 : BPI −→ OP.
Namely, F1P = P∗ for every BPI P, F1f = fQ ◦ f ◦ iP for every BPI-morphism
f : P → Q, where iP : P∗ → P is the inclusion map.



From OPs to OMPs

Let P be an OP.

Denote LP the language consisting of an unary operation symbol ′, a binary
operation symbol +, and a constant cx for every element x ∈ P.

Denote TP the set of all terms in the language LP .

Given an OMP Q and a BPI-morphism f : P → Q, let valf be a function with
the smallest domain from a subset of TP into Q such that:

1. valf (cx ) = f (x), for every x ∈ P,
2. valf (τ ′) = valf (τ)′, for every τ ∈ dom(valf ),
3. valf (τ + σ) = valf (τ) ∨ valf (σ), for every τ, σ ∈ dom(valf ) such that

valf (τ) ≤ valf (σ)′.



From OPs to OMPs

We say that a term τ ∈ TP is well-formed if τ ∈ dom(valf ) for every OMP Q
and every BPI-morphism f : P → Q. Denote WP the set of all well-formed
terms τ ∈ TP .

For τ, σ ∈ WP , let τ � σ iff valf (τ) ≤ valf (σ) holds for every OMP Q and
every BPI-morphism f : P → Q.

Let τ ≈ σ if τ � σ and σ � τ . Then � is a preorder and ≈ is an equivalence
relation.

Let FP be the quotient WP/≈, that is, the elements of FP are the equivalence
classes [τ ]≈ = {σ ∈ WP : τ ≈ σ}. The set FP is partially ordered by the
relation ≤ where [τ ]≈ ≤ [σ]≈ iff τ � σ.



From OPs to OMPs

Fact
Let τ, σ ∈ WP .

1. τ ≈ σ iff τ ′ ≈ σ′,
2. if τ � σ′ then τ + σ ∈ WP and [τ + σ]≈ = [τ ]≈ ∨ [σ]≈.

This allows us to define ([τ ]≈)
′ = [τ ′]≈. Denote 0 = [0]≈, 1 = [1]≈.

Fact
1. The structure P∗ = (FP ,≤,′ , 0, 1) is an OMP.
2. Mapping fP : P → P∗, defined by fP(x) = [cx ]≈ for all x ∈ P, is a

BPI-morphism.

Theorem
For every OMP Q and for every BPI-morphism g : P → Q there exists a unique
OMP-morphism h : P∗ → Q such that g = h ◦ fP .

This is again sufficient to define the free functor F2 : OP → OMP.



From OPs to OMPs

Problems
1. Characterize terms τ ∈ WP .
2. For τ, σ ∈ WP , characterize τ � σ.

Conjecture
Let P be an OP. Then for every τ ∈ WP there exists σ ∈ WP such that τ ≈ σ
and for every x ∈ P, constant cx occurs in σ at most once.

Conjecture
Let P be an OP. Then τ � σ iff for every BPI-morphism f : P → {0, 1},
valf (τ) ≤ valf (σ).


